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Abstract—Developing a robust and rapid system for obstacle
avoidance and boundary following has long been a goal of
robotics research. The echolocating bat, Eptesicus fuscus, has
evolved to navigate through complex environments in pursuit
of evasive prey. Given its robust flight behavior, active sensing
through sonar, small size, and low power consumption, E. fuscus
has much potential as a source of inspiration for bio-inspired
engineering, especially in the context of unmanned aerial vehicles.
In this paper, we take steps toward such engineering by investi-
gating the obstacle avoidance and boundary interaction behavior
of E. fuscus. The bat’s obstacle avoidance behavior is compared to
the neurally-inspired open space algorithm, a winner-take-all
based heading direction selection method. Boundary interaction
by the bat is examined by testing a hypothesis: in following a
boundary, the bat’s flight path curvature is a time-delayed version
of the boundary curvature. Initial results are promising; however,
future work will include a more rigorous statistical analysis of
observed behavior.

I. INTRODUCTION

In designing a mobile robot or other freely moving, au-
tonomous vehicle, one of the primary concerns is successfully
moving toward a target while avoiding collisions with possibly
nonstationary obstacles. Another important task for mobile
robots is continuous following of a boundary. Though this
task may at first seem derivative of obstacle avoidance, it
can be used to serve unique purposes that are greater than
simply avoiding collisions, e.g., localization or map building.
Robot navigation methods can be understood by imagining a
spectrum spanning from entirely global methods that attempt
to find the globally optimal path from the robot’s current
position to the target (for a globally convergent potential field
method, see [1]), to entirely local methods that only use
immediate sensory information to select appropriate actions
and thus include a very limited internal world model (for
a highly successful example, see the Dynamic Window Ap-
proach [2]; for a more theoretical treatment, see [3]). On the
one hand, globally optimal path planning methods suffer from
computational intractability or overly stringent assumptions,
such as availability of a perfect world model and no sensor
noise. On the other hand, local methods suffer from local
minima in the search space, and may exhibit cyclic behavior
or even fail to reach the target. These challenges are further
complicated in autonomous unmanned aerial vehicles (UAVs),
which can only use a very limited range of speeds in order to
maintain lift.

A potentially rich source of inspiration for robot navigation
methods is the flight behavior of the echolocating big brown
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bat, Eptesicus fuscus. The big brown bat uses sonar for sensing
its environment [4] and has evolved sophisticated behavior for
pursuing evasive prey [5]. During foraging in the night, the bat
must navigate through complex wooded environments while
competing with other bats for food. As a subject of study, the
echolocating bat is very attractive because it uses stroboscopic,
active sensing and thus, with appropriate equipment, one
can infer approximately what the bat is sensing (based on
vocalization recordings and trajectory data) and how it is
reacting at specific instants of time. In particular, it is a superb
organism for neuroethological, systems, and control theoretic
research.

A recently developed and promising approach to analysis
of navigation by biological systems is behavioral dynamics
(see [6] for a review). In this approach, behavior is described
by a dynamical system in which the specifics of goal-directed
behavior emerge from agent-environment interactions, charac-
terized by attractors and repellers, and thus are not explicitly
planned by the agent. Notable features of behavioral dynamics
include: avoidance of the assumption of an internal world
model, computational simplicity and, depending on the de-
scriptive system, improved scaling with increased environment
complexity. For a concise treatment of the subject and an
application to human walking behavior modeled using the
dynamics of a spring with damping, see [6].

Recent work demonstrates the successful development of a
sensorimotor feedback law, generating a type of pursuit called
“constant absolute target direction” ([5], [7] and [8]), that
describes prey pursuit behavior of the echolocating bat and
has applications to, for example, missile guidance and UAV
flight control. Encouraged by this work, we propose that an
analogous approach can be taken to formulate sensorimotor
feedback laws to describe the obstacle avoidance behavior
and the boundary interaction behavior of the echolocating bat,
and we further hope that biological models will lead to the
improvement of existing approaches or even development of
entirely new approaches to these two key functions in mobile
robots. In addition, by finding a feedback law that accurately
describes the behavior of the echolocating bat, control methods
for UAVs, which have unique requirements to maintain lift,
might be more easily engineered.

In the present paper, we take steps toward developing senso-
rimotor feedback laws for the obstacle avoidance and boundary
following behaviors of the echolocating bat by conducting
experiments with the big brown bat, Eptesicus fuscus and then
analyzing experimental data. In the case of obstacle avoidance,
we examine observed behavior through comparison to an
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existing steering control method called the open space
algorithm [9]. In the case of boundary following, we test
the hypothesis that the bat’s flight path curvature is a time-
delayed version of the boundary curvature. Initial results are
considered; however, a more comprehensive statistical analysis
of our experimental data is needed before any conclusions can
be achieved.

II. BACKGROUND

In this section, we detail the “flight room” in which all
experiments were conducted and describe equipment used for
data recording. We then briefly review natural Frenet frames,
used to model the bat’s movement and flight controls. Finally,
the open space algorithm is explained.

A. Flight Room

All experiments with the big brown bat, Eptesicus fuscus,
were conducted in one of the flight rooms of the Auditory
Neuroethology Lab, which is led by Dr. Cynthia F. Moss
and located at the University of Maryland, College Park. The
flight room has dimensions of 7.3 m length, 6.4 m width, and
2.5 m height. The walls and ceiling are covered with sound
absorbent material that substantially reduces reverberations.
Lighting during experiments is dim and long wavelength (red,
> 650 nm). E. fuscus is only weakly sensitive to this type of
light and is thus forced to rely primarily on echolocation for
navigation and other behaviors.

A diagram of the flight room is shown in Fig. 1. We
used three pieces of recording equipment in our experiments.
First, two high speed cameras with frame rate 250 fps (one
frame per 4 ms), and sensitivity to infrared light enable video
recording. Second, an ultrasonic microphone is placed on
the floor during experiments for detailed recording of the
bats’ vocalizations. Third, a horizontal array of microphones
allows for measuring peak intensities of vocalizations with
respect to direction. For all baseline (flight in empty room)
and obstacle avoidance experiments, the array consists of 16
microphones evenly spaced 1 meter apart along three walls.
Each of these microphones feeds into a bandpass filter and
peak envelope detector before the signal is recorded. During
the course of our project, Ben Falk and Lasse Jakobsen of
the Auditory Neuroethology Lab expanded the array to the
fourth wall, resulting in 20 microphones total. Recording
of vocalization intensity in any direction is now supported.
All boundary following experiments were performed with the
complete array, consisting of 20 microphones.

B. Natural Frenet Frames

In our analysis of experimental data, we model the bat
as a particle and consider its movement using the natural
Frenet frame (also called Relatively Parallel Adapted Frame
(RPAF)) [11], [8], [12] and [13]. In short, natural frames
specify a right-handed coordinate system that moves with
the bat as it flies through space, allowing us to examine
the speed and curvatures taken by the bat at every time
instant. The curvatures of the flight path, as found in the
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Fig. 1. The experimental flight room. Dimensions are 7.3 x 6.4 x 2.5 m3.
The microphone array is used for directional analysis of the bat’s vocaliza-
tions. The two high speed cameras facilitate 3D flight path reconstruction.
Finally, a high fidelity microphone is placed on the floor for recording
vocalizations. The figure is copied from [10].

natural Frenet frame, represent steering controls available to
the bat. Understanding how speed selection and steering in the
observed behavior relate to sensory information, such as range
and directional data obtained from an ultrasonic vocalization,
is critical in finding sensorimotor feedback laws that describe
obstacle avoidance and boundary following behavior and in the
eventual application of the control methods to mobile robots.
A more detailed treatment of the natural Frenet frame follows.

We represent the bat’s flight path as a vector y parameter-
ized by time t; that is, v : [0,7] — R3, where T is the last
time considered. We assume that V¢, 4(¢) # 0; such a curve
is called regular. Note that the “dot” operator over the vector
indicates the derivative with respect to time, that is, 4 = (ciTZ'
In addition, we assume that the curve « is twice differentiable
and continuous for all 0 < ¢ < T'. At time ¢, the arc length of
the curve is expressed by

o(t) = / ") ar, (1)

where || - || denotes the Euclidean norm. Given the arc length

_ ds
s, we thus have the speed v = g

We next proceed to specify the moving coordinate system
that is the “frame.” Let T be a unit vector in the direction of
the instantaneous velocity vector:

BECIEY
= Fap — @

The natural Frenet frame is thus defined for all ¢,

.T(t) = v()(u(t)My(t) + v(t)Mz(t)), 3)
My () = —v(t)u(t)T(1), )
Mo (t) —v(t)v(t)T(t), (5)

where M, and Mo are unit vectors such that

Mi(t) L Ma(),
Mi(t) L T(),
Ma(t) L T(t) W,
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and v and v are called natural curvatures. These curvatures
can be understood as gyroscopic steering controls available to
the moving particle (in our case, a bat). Therefore, given an
initial frame (T'(0),M;(0),M2(0)) and a path curve =, all
positions of the frame along the path (for ¢ € (0, 7)), speed v
and curvatures u and v are uniquely determined.

In this project, we use the natural Frenet frame in order to
reconstruct the bat’s speed and curvature (or steering) at every
time instant. Given the frame rate of the high speed infrared
cameras used for recording (250 fps) time in experimental
data is given in discrete steps of 4 milliseconds. Determination
of the initial frame orientation and all curvatures and speed
throughout the course of a flight is a nontrivial problem. We
use the Regularized Inversion algorithm developed by Puduru
Viswanadha Reddy to approximate an optimal solution [14].
The MATLAB software that implements the algorithm was
developed by P. V. Reddy in the Intelligent Servosystems Lab,
which is led by Dr. P. S. Krishnaprasad.

C. Open Space Algorithm

The open space algorithm is a method for obstacle
avoidance proposed by Dr. Timothy K. Horiuchi [9]. It is
briefly introduced here.

Assume that the only sensory information available for
steering is range and directional data, which can be understood
by imagining a set of relative heading angle (in radians) and
distance (in meters) pairs. The angle is relative to the current
sensor orientation or, in the case of a bat, the head direction.
The open space algorithm operates under the assumption
of constant speed (an important requirement to maintain lift
in many aerial vehicles) and thus focuses on selecting a new
bearing. Each potential direction 6 is evaluated according to
the equation

—(0-64)2 N
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where E) is an initial bias, which may encode prior knowledge
such as actuation limits, g is the center height of a goal
Gaussian, which if no obstacles were detected, would cause
flight toward the goal, and the final term is a summation of
subtractive Guassians caused by detected distances to obstacles
(possibly revealing the presence and proximity of obstacles).
See Fig. 2 for a graphical depiction of a sample evaluation.
Two noteworthy elements are the inverse obstacle weighting
with respect to range (i.e., T%), and the range-dependent vari-
ance o(r;). This system has been successfully implemented
in analog VLSI using spiking neurons that “race” to win and
are inhibited by echoes from obstacles (which contain implicit
obstacle distance data given echo return times), thus making
a winner-take-all architecture [9].

III. OBSTACLE AVOIDANCE

The first behavior of the big brown bat of interest is
obstacle avoidance. In this project, we began our work in
the Auditory Neuroethology Lab, in which we designed and
conducted experiments in order to gather behavioral data on

bias + goal steering + obstacle inhibition

winner-take-all
— selects the max

‘openspace’ evaluation

direction units

Fig. 2. A sample open space evaluation. The horizontal axis represents
potential steering directions for the agent, and the vertical axis represents the
desirability of each possible direction. The dotted curve indicates an initial
bias due to, for example, direction to the goal and any prior knowledge, such
as actuation limits. The two dips in the plot represent reduced desirability
caused by detected obstacles. Finally, the direction with the largest evaluation
is selected. The image is copied from [9].

the echolocating bat, and then moved on to data analysis,
including: 3D flight path determination, vocalization direc-
tional analysis, calculation of various flight trajectory statistics,
and curvature extraction. Most of our analysis was performed
in the Intelligent Servosystems Lab. As mentioned earlier in
the paper, both laboratories are located at the University of
Maryland, College Park, and are led by Dr. C. F. Moss and
Dr. P. S. Krishnaprasad, respectively.

In attempting to understand the obstacle avoidance behavior
of the big brown bat, we compare experimental results to sim-
ulations of a bat operating under the open space algorithm
in an environment that approximates the experimental setup.

A. Experiment: Materials & Methods

All obstacle avoidance experiments were conducted in a
flight room in the Auditory Neuroethology Lab (simply the
“BatLab”). Two bats of the species Eptesicus fuscus were
used in the experiments, one male and the other female. In all
experiments, the basic task for the bat is to find and capture a
tethered meal worm (i.e., a stationary target), which is hung at
the end of a thin string attached to the ceiling. We performed
36 baseline (empty flight room, no obstacles) trials before
proceeding to obstacle avoidance experiments.

In our experiments, the obstacles were artificial trees con-
structed by previous BatLab researchers. The basic structure
of an artificial tree consists of mist net strung on the edges
of two metal rings, which form the top and bottom of the
tree. When hung from the ceiling, each of these artificial trees
approximates the shape of a cylinder with radius 25.7 cm and
spans nearly the entire height of the flight room. Mist net is
a thin and light weight black net that permits visibility of the
bat by the flight room cameras, even if the bat is flying behind
several artificial trees. However, despite its thin structure, the
echolocating bat can still detect the mist net, and accordingly,
the trees successfully act as obstacles.

We designed and conducted a total of five different obstacle
avoidance experiments, in which the number of artificial trees
is 10, 13, or 14. Table I specifies dates, numbers of trees, and
number of trials completed. A top view of the flight room for
an experiment in which 10 trees were used is shown in Fig.
3, and similarly, Fig. 4 depicts the setup for an experiment
in which 14 trees were used. Notice the use of a barrier at
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TABLE 1
OBSTACLE AVOIDANCE EXPERIMENTS: NUMBER OF TRIALS

Date Number of trees | Bat HP77 | Bat OR41
06/13/2008 10 20 11
06/18/2008 10 0 9
06/18/2008 13 20 0
06/23/2008 14 + barrier 22 4
06/24/2008 14 + barrier 0 7
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Fig. 3. Top view of the arrangement of artificial tree obstacles for one of our
experiments, conducted on June 13, 2008. The obstacles are approximately
cylindrical, and thus appear as circles in this top view. Each artificial tree has
a radius of 25.7 cm. Three sample recorded flight paths are drawn. For each
path, a small circle marker indicates the starting position, and a small “X”
marker indicates the final position.

the edge of the artificial “forest.” The barrier is a sheet of
mist net that connects a tree at the edge of the forest to one
wall of the flight room. This construction prevents the bat
from continuously circling around the outside of the forest
and thus forces it to enter and navigate amidst the artificial
trees in search of the meal worm. During performance of all
obstacle avoidance experiments, we initially hung the meal
worm somewhere among the artificial trees and then moved the
meal worm to a new, random location after every two or three
trials. The location of the meal worm is changed frequently
to discourage development of spatial memory by the bat.

B. Data Analysis

After completion of all experiments, the next step is analysis
of the data. In particular, the software tools D3, Sunshine,
and Moonbeam, all developed in the Auditory Neuroethology
Lab by Kaushik Ghose, Murat Aytekin, and others, enable
3-dimensional flight path reconstruction (using raw video
data), directional analysis of vocalizations (using microphone
array data), and trial animation generation, respectively. This
analysis is important because it takes raw experimental data
and transforms it into a much more accessible form: a series
of (z,y,z) coordinates in time steps of 4 ms (as a result
of camera rates of 250 fps), the (x,y) coordinates of the
artificial trees, and normalized vocalization intensities read by
the microphone array. The vocalization intensities are tagged
with time of occurrence, and can thus be easily used to create
an emission beam. This beam is important because it provides
insight into what the bat might have been able to sense at that
moment of flight. In particular, we can infer obstacle distances

Fig. 4. Top view of the arrangement of artificial tree obstacles for one of our
experiments, conducted on June 23, 2008. The obstacles are approximately
cylindrical, and thus appear as circles in this top view. Each artificial tree has
a radius of 25.7 cm. The thick line toward the top of the figure represents a
mist net barrier constructed to prevent the bat from circling around the outside
of the artificial forest. The barrier spans from the edge of one tree to the flight
room wall (not depicted). Three sample recorded flight paths are drawn. For
each path, a small circle marker indicates the starting position, and a small
“X” marker indicates the final position.

o

Fig. 5. A sample bat vocalization from one of the obstacle avoidance
experiments (performed on June 23, 2008). Shaded circles represent obstacles,
and the short, straight line attached to the left-most tree is a mist net
barrier. The fan shape represents the echolocation chirp, with darker gradients
indicating greater intensity. Notice that the bat initially flies outside of the
artificial forest and, after detecting the barrier, turns into the forest. Based on
the vocalization intensity at this moment in time, one may suppose that the
bat sensed the distances of the trees immediately in front of it and also trees
in the upper right section of the artificial forest.

known by the bat. A sample vocalization beam, including flight
path, is shown in Fig. 5

After determination of the bat’s flight path, which is rep-
resented as a series of (x,y,z) coordinates in time steps
of 4 ms, an optimal natural Frenet frame is found for the
data. Curvature extraction is completed using the Regularized
Inversion software developed by P. V. Reddy [14], leading to
speed, curvatures, and frame orientation for every point along
the flight path in time steps of 2 ms. The extracted speed and
natural curvatures from a particular obstacle avoidance trial
are shown in Fig. 6.
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Fig. 6. Sample speed and curvature plots for one of our obstacle avoidance
trials (specifically, June 23, 2008, trial 8). Sudden steps in the curves are
a result of dividing the trial into three disjoint sections prior to curvature
extraction. This must be done because analysis of an entire trial spanning over
several seconds (at a resolution of 2 ms) is very computationally expensive.

C. Comparison to Open Space Simulations

In order to begin to understand the obstacle avoidance
behavior of the echolocating bat, we compare the actual bat
flight data to that generated by the open space algorithm in
simulation. Due to time limitations, all of the analysis herein
pertains only to a limited number of trials from our complete
data set.

First, as noted in the Background section of this paper, there
are several parameters in the open space algorithm that
can be altered to change the model behavior. We modified the
existing simulation software, written by Dr. T. K. Horiuchi, to
make the simulation more like the experimental environment.
To that end, we wrote a MATLAB function called simecho
which, given an obstacle field of circles of arbitrary radius and
a resolution for range scanning, returns approximate distance
data. Thus, instead of treating each obstacle as a point in simu-
lation, we are able to deal directly with distance information of
non-point obstacles (e.g., artificial trees). Various other updates
were made to existing software in order to more closely model
the experimental setup. For example, time steps were reduced
from 100 ms to 4 ms in order to reflect the real bat flight data.

During initial use of the software and while attempting to
adjust controller parameters to enable successful operation in a
simulation environment nearly equivalent to the experimental
setup of our obstacle avoidance trials, we discovered the
difficulty of selecting a good combination of parameters. A
stochastic search method is proposed, in which the parameter
space (4 dimensional because we considered only 4 parame-
ters) is searched by adding Gaussian noise to competing sets
of parameters. We label the parameters a, b, ¢, and d (their
use will be explained later). Then, given a total number of
iterations num_iter and number of offspring to consider
in each iteration num_offspring, the stochastic search
method can be expressed in the following pseudocode:

Initialize a set of combinations of
initial positions, initial orientations,
and goal positions.

Initialize the parameters {a,b,c,d}

For i in 1 to num_iter

Select an initial position and goal
location.
For j in 1 to num_offspring
Add Gaussian noise (mean 1,
to parameters.

Perform trial using these parameters
Score this offspring’s performance
Select two offspring with highest score
Randomly combine parameters from these

two offspring to generate a new
parameter set.

var 0)

The cost function computed to score the offspring (i.e., can-
didate parameter sets) is, given parameters a, b, ¢, and d,

w(a,b, ¢,d) = neon + 0.1+ (T + dg) (7)

where n.,; is the number of collisions (the agent is permitted
to pass through artificial trees and continue the trial), T is total
time of the trial (where trials stop if either the goal is reached
or the maximum allowed trial length is reached), and d, is
the final distance to the goal (i.e., distance between agent and
goal point at end of trial).

We describe where the parameters appear in the software
implementation of the open space algorithm. First, in bi-
asing of direction desirability based on prior goal knowledge,
each direction 6 is initialized using

a —(0+9pias)?

B(@) =5+ max (0.5, dg — b)e T

where d, is the current distance to the goal, gyiqs i a goal-
induced directional bias, and a and b are free parameters.
Recall that the initial biasing is performed prior to acqui-
sition of distance data. Let the obstacle distance data be
represented by a function that maps angle values to distance
values: f: [—E% BI] — [0, 00). Iterating through each direc-
tion, which is discretized to 33 angular steps in software, the
update rule is composed of two steps. First, for each direction
0, a value d;,, that decays exponentially with distance is

calculated,

®)

720
dipy = C- € a2

(©))

Second, given the result of Eq. (9), the evaluations of all
directions 6; are updated by

—(9-0;)*
Aimp - € 5+ ding /D2

After all direction evaluations are updated given detected
distance, the direction with maximum evaluation (or “desir-
ability”) is selected.

For use in the proposed parameter selection method, combi-
nations of initial bat position and orientation and goal position
are created and used for training. Fig. 7 provides an example
of progression of performance during the learning process.
We only compare here two real bat obstacle avoidance trials
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Fig. 7. Progressive example of performance of open space algorithm-
generated flight paths. The real bat (measured experimentally) flight path
is indicated by the thin dashed line. All thick lines indicate sample paths
generated during the learning process. After 300 training iterations, the
simulated bat’s flight path is the thick dash-dotted line. Note that all simulated
paths are initialized to the real bat’s starting position and heading, and the goal
is fixed at the terminal point of the real bat’s flight path. The experimental
setup is that of the obstacle avoidance experiment performed on June 23, 2008
(see Fig. 4 for details).

to the open space predicted paths. After learning good
parameters (by minimization of cost Eq. (7)) for the open
space algorithm, simulated trials were generated by giving
the agent the same initial position and heading as the real
bat in the experimental trials under consideration and by
fixing the goal at the final position of the real bat (i.e., last
measured point in the bat’s flight path). Ideally, the goal point
considered would be the meal worm (recall the given task of
the experiments), but we did not record the locations of the
meal worm throughout our experiments.

Comparisons of actual to predicted flight paths are shown in
Figs. 8 and 9. Parameters were learned by random selection of
two sets of initial bat position and orientation and goal location
performed over 300 iterations of our stochastic search method.
In examining these initial results, it is important to note that
the open space algorithm operates under constant speed
and thus focuses solely on steering control. By contrast, the
echolocating bat changes both its speed and steering during
flight (see Fig. 6 for an example of this behavior).

D. Discussion & Conclusion

In summary, we conducted 99 experimental trials inves-
tigating obstacle avoidance behavior of the big brown bat,
Eptesicus fuscus. With the goal of eventually describing this
behavior using sensorimotor feedback laws, which may be
later applied to improved autonomous UAV or mobile robot
control, we performed an initial evaluation of the open
space algorithm as a model for the observed behavior.
Furthermore, we proposed an automated method for searching
the parameter space of the algorithm. This stochastic search
method finds the cost of potential parameter sets by consider-
ing the number of collisions, time to reach goal, and, if the goal
is not reached, distance between agent and goal in simulated
trials. The cost function definition probably influences the final
parameter selection, and a thorough investigation of its effects,
as well as consideration of machine learning techniques, is a
potential direction for future research.
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Fig. 8. This figure shows the actual flight path of an echolocating bat,
indicated by the dashed line, in one of our obstacle avoidance experiments.
Using parameters learned by our stochastic search method (same used in Fig.
9), also shown is the predicted path (indicated by thick dash-dotted line)
generated by the open space algorithm with a fixed speed of 1.89 m/s.
The bat’s speed varied from 0.358 to 3.31 m/s, with a mean of 1.88 m/s. The
start position is marked by a small circle near the top of the figure, and the
goal is marked by a small dot at the bottom of the figure. For simulation, the
goal is set to be the final position of the real bat.

1
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Fig. 9. This figure shows the actual flight path of an echolocating bat,
indicated by the dashed line, in one of our obstacle avoidance experiments.
Using parameters learned by our stochastic search method (same used in
Fig. 8), also shown are two predicted paths generated by the open space
algorithm under two fixed speeds: 0.9 m/s (thick dash-dotted line) and 1.89
m/s (thick dotted line). The bat’s speed varied from 0.858 to 2.77 m/s, with
a mean of 2.14 m/s. The start position is marked by a small circle near the
right edge of the figure, and the goal is marked by a small dot at the left
edge of the figure. For simulation, the goal is set to be the final position of
the real bat. Notice that the predicted flight path with fixed speed of 1.89 m/s
has two collisions, whereas that with speed of 0.9 m/s successfully navigates
the artificial forest.

Comparisons to only two experimental trials are described
in this paper (see Figs. 8 and 9). After reducing simula-
tion speed by half in the second trial, the predicted paths
are topologically equivalent to the actual bat flight paths.
However, it is interesting to observe the predicted paths are
smoother, that is, the simulated bat’s path has fewer sudden
turns. Therefore, these initial results are promising and speak
favorably to use of the open space algorithm as a candidate
model for obstacle avoidance behavior of the echolocating bat.
Nonetheless, a comprehensive statistical study of the wealth
of experimental data obtained is needed before any claims
can be made. In future work, we will also attempt to find
open space parameters that lead to a best-fit model of the
experimental data, rather than optimizing them in terms of
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speed and collision avoidance (irrespective of experimental
data) as in the present study.

IV. BOUNDARY INTERACTION
A. Hypothesis Statement

In this phase of the research, we hypothesize that while
navigating around a curved boundary, the echolocating bat
will utilize a time delayed version of the boundary curvature
in controlling its own flight path. This hypothesis is inspired
by a curvature-based control law for boundary following [15]
and an experimental study in application to obstacle avoidance
[16].

B. Experiment: Materials & Methods

To test this hypothesis, we performed 72 experimental
boundary following trials among two bats. In these experi-
ments, we used a mist net that was hung on the ceiling to
create a curved boundary for the bat to follow. A meal worm
was hung at different places along the boundary to encourage
the bat to follow the curved net. After every four or five trials,
the shape of the boundary was changed to prevent the bat from
utilizing its spatial memory in navigating toward the worm
and around the net. The boundary shape alternated between
curved and straight configurations, and the flight trajectory and
microphone array data were recorded for each trial. Pieces of
white and reflective tape were attached to the net so that in
analysis, these pieces of tape could be identified as points
in a three dimensional space and the boundary could be
reconstructed.

C. Data Analysis

1) Flight Path Determination: We have only analyzed 3
trials in which the bat appeared to follow the boundary.
In these trials, the bats’ flight trajectories were determined
in a MATLAB program called D3, which is developed and
maintained in the Auditory Neuroethology Lab. This program
transforms the raw video data into a three dimensional recon-
struction of the bat’s flight path and the boundary location.
In order to approximate the boundary shape, we performed
Delaunay triangulation. Each point chosen on the boundary
is represented by a coordinate in space, and this algorithm
forms triangles by connecting each point so that no point
is located within the circumcircle of any of these triangles.
This process allows for a fairly accurate reconstruction of the
complex boundary surface within our experiments, as shown
in Fig. 10.

2) Vocalization Directional Analysis: The vocalizations
recorded by the microphone array were analyzed using a
MATLAB program called Sunshine (developed by Kaushik
Ghose). The microphone array recorded the bat’s vocaliza-
tions, which were analyzed using Sunshine, based on intensity
and the time at which each was recorded, taking into account
speed of sound and humidity within the room. A fan plot
was generated from this analysis, which depicted the area of
highest vocalization intensity and approximated the direction
in which the bat’s head was pointing when it vocalized.

2008.07.01.02

Y axds Distance (meters)

Fig. 10. The Delaunay triangulation reconstruction of the curved boundary
plotted with the bat’s flight path for trial 2 conducted on July 1, 2008. The
circle represents the bat’s starting position and the cross represents the bat’s
ending position.

3) Boundary Reconstruction: To best represent the net
boundary on a two dimensional plane, points on the boundary
within a limited range corresponding to the height of the
bat’s trajectory were selected and projected onto the zy-
plane. Within the 3 trials that have been analyzed, we used
a range of 1 < z < 1.4 meters. This range resulted in a
set of either 5 or 6 data points that most closely represented
the curvature of the net boundary at the bat’s height, given
available boundary data resolution. The MATLAB function
linspace was used in order to generate a vector of 100
points which were linearly spaced between the first and last
data points on the boundary. A best-fit sixth order polynomial
was then used to reconstruct the boundary and generate a more
complete set of data points to be used for comparison to the
bat’s flight curvature. The sixth order polynomial was used
because of its qualitative similarities to the original curved
boundary, especially regarding its S-shaped appearance. The
equation [17]:

k| =

‘ y// (11)

T+ P

was used to extract absolute value of the curvature from the
boundary approximation, in which %’ and y" are the first and
second derivatives, respectively, of the best-fit polynomial re-
construction of the boundary. The three polynomials generated
are

Periai2(t) = 0.0775t5 — 0.5941#° + 1.498t* — 1.2581¢3
—0.6699

Perianz(t) = 0.0772t° — 0.4555t5 + 0.902t* — 0.7558t3
+1.3094t — 1.6218

Periaina(t) = —0.0616t° + 0.4228t% — 0.867t* + 1.3706t>

—1.4171

The polynomial representation of the boundary was sec-
tioned off into subdivisions based on the x-coordinates of the
original points of the boundary that were used to make the
polynomial fit. These points were chosen as dividers for the
boundary sections as they represented the x-coordinates that
truly existed on the original boundary, and not coordinates that



MERIT BIEN PROGRAM, UNIVERSITY OF MARYLAND, COLLEGE PARK, AUGUST 2008 8

o N Bk

Curvature (1 /meter)
o

8l o . .
0 02 040608 1 1214186

Time (seconds)

Curvature (1/meter)
O = MWk o ® N

0 02 040608 1 121416
Time (seconds)

Fig. 11. Top: a plot of the u and v curvatures for trial 2 of July 1, 2008. The
sharp decrease in curvature between time 1.2 and 1.4 seconds represents the
point at which the bat abruptly changes directions, as seen in Fig. 12, where
the bat’s flight trajectory is plotted. Bottom: a plot of the wy curvature for
trial 2 of July 1, 2008. This is the nonnegative, normalized summation of the
u and v curvatures.

were generated by the 1inspace MATLAB function, or by
the polynomial approximation.

4) Determining Corresponding Points: In order to deter-
mine corresponding points on the bat’s curvature and the ap-
proximated boundary, the bat’s vocalizations were categorized
based on (1) whether the vocalization was pointing toward
the boundary at all and (2) which subdivision of the boundary
the vocalization was directed toward. The vocalizations which
were not aimed toward the boundary were not used in the
correlation process, as they represented instances in which the
bat was probably not attempting to use the boundary curvature
in its navigation process. When vocalizing, the bat tended to
focus its sonar beam direction on either the first half or the
last half of each net section. Fig. 12 depicts the reconstructed
boundary as well as the bat’s trajectory and four sequential
vocalizations within one trial, demonstrating one instance in
which the bat focuses solely on the last half of the second
section of the curved boundary.

The vocalizations depicted in Fig. 12 are in support of the
previous statement that the bat’s beam directions tended to
focus on either the first or last half of the boundary sections.
Curvatures were chosen based on each vocalization, thus
the number of vocalizations and the number of curvatures
extracted from the net were equal. In order to avoid using
repeated curvatures on the net, and for simplicity of analysis,

when the bat directed its sonar beam primarily on the first
half of the net section, the sequential curvatures beginning
at the first curvature defined in this section were used in the
correlation process. When the bat directed its beam primarily
on the last half of the net section, the sequential curvatures
ending at the last curvature defined for this section were used.
For example, if one section was grouped along with nine of
the bat’s vocalizations, and the bat directed its beam on the
first half of that section, then the first nine net curvatures
would be used in the correlation process. Similarly, if the
bat directed its beam on the last half of the section, the last
nine net curvatures would be used. The section of the net in
which the bat was vocalizing toward was determined by a
close examination of each of the vocalization intensity beams.
The Sunshine generated fan plots for each vocalization were
studied, and the intersection between the beams of highest
intensity and the boundary were used in order to determine
approximately where on the net the bat’s beam direction was
aimed.

The method of Regularized Inversion [14] was used to
extract curvatures, denoted by u and v, from the bat’s flight
trajectory. In order to effectively compare the curvature of the
bat’s flight with the curvature of the net, the u and v curvatures
were combined to form a scalar, wy, as shown in Fig. 11, by

the formula
wp = V2 + u?

which is a nonnegative representation of the steering control
employed by the bat [18]. This resulted in a set of scalar
curvature values that represented the overall curvature for the
bat’s position every 2 milliseconds in time.

(12)

D. Testing the Hypothesis

After extracting the curvatures from both the bat’s flight
trajectory and the boundary and determining the corresponding
points on each, time delays were added and correlations were
computed to determine the best time delay for each trial. The
“best” time delay is represented by that which maximizes the
correlation coefficient between the bat and boundary curva-
tures. The best time delay represents the amount that the bat’s
curvature should be shifted so that its corresponding points on
the net boundary best correlate. A time delay of 2 milliseconds
represents a shift of one “step” in the bat’s overall curvature, or
wy, vector. A MATLAB script was created in order to calculate
the correlations for a large span of time delays, ranging from 2
milliseconds to 350 milliseconds. The w; vector was traversed
depending on the time delay, so a delay of 2 milliseconds
would traverse the vector by 1 step, whereas a delay of 350
milliseconds would traverse the vector by 175 steps. In this
study, the equation for correlation coefficient is

1 N — _
r— N 21:1(%’ —Z)(yi — )
1 N — 1 N _

\/ﬁ Zizl(xi - x)z\/ﬁ 21’21(%‘ - y)z
where x; is the bat’s curvature, T is the mean of the bat’s
curvatures, y; is the boundary curvature,  is the mean of
the boundary curvatures, and N is the number of curvatures
considered. This equation was used in order to calculate the

13)
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Vocalizations 10 through 13 in trial 2 of July 1, 2008, plotted with the best fit polynomial approximation of the curved boundary. The highest

intensity vocalization beams are directed toward the end of the second section of the reconstructed boundary. Shifting of the bat’s sonar beam direction is
barely noticeable within the bat’s beam directions, thus the use of consecutive curvatures on the boundary approximation is a reasonable estimation.

correlation coefficient between the two sets of curvatures. The
correlation coefficients were plotted against the varying time
delays. The maximum correlation coefficient was calculated
along with its corresponding time delay.

E. Discussion & Conclusion

Results of this study have thus far been inconclusive, yet
promising. While the time delay from the analysis of the first
trial was 98 ms with a correlation coefficient of 0.5630, the
time delay from the second trial was 302 milliseconds with a
correlation coefficient of 0.8856 and the time delay from the
third trial was 340 milliseconds with a correlation coefficient
of 0.7655, as illustrated in Figs. 13-15. However, all of these
results indicate that the bat may be following a time delayed
version of the boundary curvature. A more in-depth analysis
of the experimental trials that were performed should not only
give a more statistically sound set of results, but should also
better test the time delayed curvature hypothesis among a
wider range of data.

One of the problems with this experiment was that there
had to be a goal or incentive that provided a reason for the
bat to follow the curvature of the boundary. In this case,
a meal worm was hung along the net boundary. However,
while tracking the meal worm, the bat vocalized to determine
the position of its target. It was thus difficult to determine

Correlation vs. Time Delay
ol
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m [0 E ] 108 [T RET"]

Titne Delay {milliseconds)

T

Fig. 13. The correlation versus time delay plot for trial 2 of July 1, 2008.
The correlation coefficient is maximized at 0.5630 with a time delay of 98
milliseconds.

which vocalizations were used to determine the position of the
meal worm versus which vocalizations were used to follow or
avoid the net boundary. One possible explanation as to why
the three trials are not similar is that the vocalizations that
were directed toward the net boundary were used initially to
determine where the meal worm was located. Thus, depending
on the location of the meal worm and the time it took for
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Fig. 14. The correlation versus time delay plot for trial 13 of July 1, 2008.
The correlation coefficient is maximized at 0.8865 with a time delay of 302
milliseconds.
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Fig. 15. The correlation versus time delay plot for trial 14 of July 1, 2008.
The correlation coefficient is maximized at 0.7655 with a time delay of 340
milliseconds.

the bat to capture the worm, the time delay in boundary
following would vary substantially. It thus becomes difficult
to meaningfully correlate the bats curvature with the boundary
curvature when there are others objects that the bat may be
focusing its attention, or vocalizations, upon. Although it is
very plausible that the bat was able to use a single vocalization
for both tasks, it did not appear to do so within these analyzed
trials. More analysis of the boundary following experiments
that were conducted, as well as further study into the bat’s
neural processes and auditory abilities would be required in
order to determine whether or not the bat is able to track prey
and follow boundary curvatures simultaneously.

In the future, a different technique in reconstructing the
boundary as a 2-D projection onto the xy-plane would be ben-
eficial, as the current process is not as rigorous as is preferred.
Although the sixth order best-fit polynomial approximates
the boundary in a fairly reasonable manner, a more robust
method would be more accurate in generating representations
for various boundary shapes. The sixth order approximation
may have been a reasonable fit for the S-shaped boundary,
however the reasons for its use were largely subjective and
based on a qualitative representation, as there were not many
points used in generating this shape. In addition, a better

method of identifying the boundary within the experimental
trials would be useful as well. With a denser array of points
within the bat’s height range, more data points could be used to
reconstruct the two dimensional representation of the boundary
and thus the best fit polynomial would be significantly more
accurate.

Additionally, selecting points on the boundary to be used
for curvature extraction proved to be somewhat unreliable.
Stating that the vocalizations followed the boundary curve
sequentially was an assumption that was largely influenced
by time constraints. In future steps, a more in-depth analysis
of the exact boundary location which the bat was vocalizing
towards would be a more reliable method of choice. A method
such as summing the Sunshine analyzed vocalization beams
to produce a beam-direction vector would be a better estimate
of the position that the bat was vocalizing toward. Instead of
using sequential curvatures on the net boundary, the sum of the
directional beams for each vocalization would be calculated
and the point at which it intersects with the boundary would
be used in the correlation process.

V. FUTURE WORK

In this project, we have collected a large amount of exper-
imental data for the obstacle avoidance and boundary interac-
tion behavior of the big brown bat, Eptesicus fuscus. We have
also taken initial steps in analyzing this data, comparing the
obstacle avoidance behavior to the open space algorithm
(as a model), and testing the time-delayed boundary curvature
hypothesis. Future work will entail more detailed analysis,
including a statistical exploration of our initial findings. In
addition, we hope that these results will lead to development
of feedback control laws that both describe the echolocating
bat’s behavior and inspire new navigation methods for mo-
bile robots, especially autonomous unmanned aerial vehicles
(UAVs).
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