
Consolidated actor–critic model for
partially-observable Markov decision
processes

I. Elhanany, C. Niedzwiedz, Z. Liu and S. Livingston

A method for consolidating the traditionally separate actor and critic
neural networks in temporal difference learning for addressing par-
tially-observable Markov decision processes (POMDPs) is presented.
Simulation results for solving a five-state POMDP problem support
the claim that the consolidated model achieves higher performance
while reducing computational and storage requirements to approxi-
mately half those of the traditional approach.

Introduction: In temporal difference (TD) learning [1], an agent’s goal
is to maximise a long-term reward prospect, as provided by its environ-
ment. At each time step, the agent attempts to improve value estimation
accuracy by minimising the differences in temporally separate measure-
ments. The value of each state–action pair is dependent on the current
policy, which maps states to actions. The policy, in turn, is improved
based on the current value function approximation. By iteratively refin-
ing these two constructs, an optimal control policy is obtained [1].

In actor–critic (AC) algorithms, an agent typically consists of two
building blocks: an actor that constructs the policy, and a critic that
maintains a value function estimate for the actor’s current policy. The
value function maps state–action pairs to scalar values that represent
the expected sum of future time-discounted rewards to be received by
the agent when following the current policy. In partially-observable set-
tings, explicit state information is not made available to the agent.
Rather, the agent infers the state of its environment from a sequence
of observations it receives.

For problems with large state and/or action spaces, nonlinear function
approximators, notably artificial neural networks (ANNs), are often used
to represent the actor and critic. When addressing partially-observable
problems, recurrent neural networks have been proposed. In traditional
AC learning-based systems, the actor and critic are realised using two
separate ANNs. In previous work [2], an early attempt to combine the
value and policy functions into a single network has been demonstrated;
however, in that scheme, the agent has only two possible actions at every
state, and the network learns action probabilities rather than actions, thus
weakening scalability.

In this Letter, we present a method for consolidating these two net-
works into one, thereby substantially reducing storage and processing
requirements, while supporting high-dimensional state and action
spaces. Such consolidation is shown to yield substantial reduction in
computational effort, storage requirements and convergence time.

Traditional actor–critic design: In the traditional AC design [3], the
actor is approximated by a two-layer feedforward ANN, in which
the hidden layer employs a nonlinear mapping, fi(t) ¼ f (xi), such as
the sigmoid function, where xi(t) is the sum of all weighted activations
going into neuron i and yi(t) is its output, all at time t. To facilitate state-
inference, the output of the hidden layer at time t is fed back as input at
time tþ 1, in accordance with an Elman network structure [4]. Similarly,
the critic is approximated by an Elman network, in which the output
layer activation function is typically linear.

The network learning process is governed by stochastic gradient
descent. In particular, at time t, the error of the critic network is give by

EcðtÞ ¼
1

2
ð½rðtÞ þ gJ ðtÞ� � J ðt � 1ÞÞ2 ð1Þ

while the error of the actor network is

EaðtÞ ¼
1

2
ðJ ðtÞ � R�Þ2 ð2Þ

where R� is the optimal return, which is dependent on the problem defi-
nition. The expected return is expressed as the general cost function, J(t),
which is to be maximised by the agent. Specifically,

J ðtÞ ¼ rðt þ 1Þ þ grðt þ 2Þ þ g2rðt þ 3Þ þ � � � ð3Þ

where r(t) is the immediate reward and g is the time-discounting factor
(0 � g , 1). Finally, following the procedure of gradient descent, the
networks’ mappings are updated after each time step by adding a
scaled negative of the error gradient to their weights.
ELECTRONICS LETTERS 23rd October 2008 Vol. 4

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on Novem
Consolidated actor–critic model: This Letter proposes a consolidated
actor–critic model (CACM), for which the goal is to eliminate redun-
dant implicit environmental modelling information. In order for the
actor to optimally select actions and the critic to correctly evaluate a
state, both must be able to accurately model the underlying dynamics
of the agent’s environment. The CACM is designed to eliminate this
duplicated effort by embodying the actor and critic in a single ANN.

Let nnCACM(.) represent the ANN of the combined actor and critic.
Given a state vector s(t) and action vector a(t), nnCACM is defined
such that nnCACM(s(t), a(t)) ¼ (J(t); a(tþ 1)), where J(t) is the estimated
value of the given state-action pair (obtained from the critic), and
a(tþ 1) is the subsequent action to be taken by the agent (produced
by the actor).

The error at the critic node output is the squared Bellman error [3].
However, the error at the action outputs is now defined by the gradient
of the estimated value J(tþ 1) with respect to the action vector a(tþ 1)
selected by the CACM network at time t. Specifically,

eaðtÞ ¼ araðtþ1ÞJ ðt þ 1Þ

¼ a
@J ðt þ 1Þ

@a1ðt þ 1Þ
; . . . ;

@J ðt þ 1Þ

@adðt þ 1Þ

� �
ð4Þ

where a is a scaling constant and d is the number of elements in the
action vector a. Combining the error for each component of the selected
action, the overall actor error is

EaðtÞ ¼
1

2

Pd
i¼1

e2
ai
ðtÞ

� �
ð5Þ

where eai
(t) is the ith element of the action error gradient ea(t).

In finding the gradient of the estimated value J(tþ 1) with respect to
the previously selected action a(tþ 1), the direction of change in action,
which will improve the expected return at time step tþ 1, is obtained.
Thus, by incrementally improving actions in this manner, an optimal
policy can be achieved. The error to be minimised for the entire
CACM network is now defined as E(t) ¼ Ec(t)þ Ea(t).

Simulations: The problem chosen to be solved is optimisation of a five-
state partially-observable Markov decision process (see Fig. 1). The
agent begins each episode in state A, and an episode terminates once
the agent enters state E. From each non-terminal state, two deterministic
actions are available: ‘down’ and ‘right’. For discounting factor 0 ,

g , 1, the optimal policy in terms of state transitions is A! B!
C! D! E. To simulate partial observability, states B and C deliver
identical observations to the agent. We find that such a problem
conveys the intuition behind the proposed control method, while remain-
ing simple enough to prevent application-specific heuristics, which
would narrow the applicability of our results.

A B

E

3

5
5 5 5

3 3 0

C D

Fig. 1 Partially-observable Markov decision process to be optimised

Each state, except state E, is non-terminal. States B and C appear identical to agent
(hence, partial observability). Each action is indicated by line with number which
is associated transition reward

Three AC controllers are applied to the problem. First, the proposed
consolidated actor–critic model (CACM) is labelled ‘CACM-20’ and
implemented using the nonlinear hidden layer activation function
tanh(.) and 20 hidden neurons, all of which are fed back as network
input; the network learning rate is 0.01. Next, two controllers are
implemented, which are similar in function to ‘CACM-20’, with the
exception of hosting separate networks for the actor and critic function-
alities. The activation function of the actor’s output layer is tanh(.)
(rather than a simple summation as in the critic network and in the
output layer of ‘CACM-20’), and the actor 5 network learning rate is
0.005. One of these controllers has ten hidden neurons per network
4 No. 22

ber 12, 2008 at 17:40 from IEEE Xplore. Restrictions apply.

(20 total) and is thus labelled ‘traditional AC-10’ while the other control-
ler has 20 hidden neurons per network (40 total) and is labelled
‘traditional AC-20’. Finally, for all three agents, the actor learning
step size a ¼ 0.001.

To learn the optimal policy, some amount of exploration must be
included during training. Each of the tested agents selects a random
action with probability 1 ¼ 0.1, otherwise it selects the greedy action
given by the actor. The greedy action is defined as the one that has
the highest expected return. In all simulations, the return discount par-
ameter chosen was g ¼ 0.9. Also, a trial is defined as the number of
training episodes required for convergence (i.e. to reach the optimal
policy).

For the experiment, 100 trials were performed. The output errors
(Bellman and action) are recorded after each discrete time step, averaged
across the 100 trials, and then squared and multiplied by 0.5. The
squared Bellman error of the three actor-critic agents is shown in
Fig. 2. In addition, a running average filter is applied to the squared
action error according to: Davg(t) ¼ 0.95Davg(t 2 1)þ 0.05Draw(t),
where Davg(0) ¼ 0, Davg(t) is the running-average squared action error
of time step t, and Draw(t) is the actual error. The squared action error
of the three tested agents is also shown in Fig. 2. Finally, based on
the 100 performed trials, the mean number of training episodes until
convergence, required by each controller, is listed in Table 1.

0
0

3

2

1

0
0 0.5 1.0 1.5 2.0 2.5 3.5 4.03.0

2

4

6

8
CACM-20

traditional AC-10

traditional AC-10

traditional AC-20

traditional AC-20

5 10 15

discrete time step

discrete time step (× 104)

CACM-20

sq
ua

re
d

B
el

lm
an

 e
rr

or
sq

ua
re

d
ac

tio
n

er
ro

r
(×

 1
0–7

)

20 25 30 35 40

Fig. 2 Squared Bellman error averaged over 100 independent trials (upper
plot), and smoothed squared action error averaged over 100 independent
trials (lower plot)
ELECTRONIC

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on November 1
Table 1: Mean training episodes required to learn optimal control
policy, derived from 100 independent trials

Method Mean episodes to convergence

CACM-20 41720

Traditional AC-10 104800

Traditional AC-20 102600

As reflected by the results, consolidating the actor and critic networks
improves the mean convergence time by more than half while equally
reducing computation and memory requirements. This supports the
assertion that the traditionally separate neural networks perform at
least partially redundant environmental modelling, and therefore com-
bining the networks can both improve the convergence rate and
reduce the required resources.

Conclusions: The consolidated actor–critic model, for eliminating
redundant implicit environmental modelling in actor–critic temporal
difference learning systems using artificial neural networks, is presented.
Simulation results for learning the optimal policy of a five-state POMDP
indicate substantially improved performance compared to that of a tra-
ditional, two network actor–critic approach. Not only is the mean
number of training episodes leading to convergence more than halved,
but also the required memory and computational resources are approxi-
mately halved. The proposed control method is particularly applicable to
resource-constrained decision-making platforms, such as embedded
systems or mobile robotics.

The Institution of Engineering and Technology 2008
13 May 2008
Electronics Letters online no: 20081346
doi: 10.1049/el:20081346

I. Elhanany, C. Niedzwiedz and S. Livingston (Department of Electrical
Engineering and Computer Science, University of Tennessee, 414 Ferris
Hall, 1508 Middle Way Dr., Knoxville, TN 37996-2100, USA)

E-mail: itamar@ece.utk.edu

Z. Liu (Yahoo Search, Inc.)

References

1 Sutton, R.S., and Barto, A.G.: ‘Reinforcement learning: an introduction’
(MIT Press, Cambridge, MA, USA, 1998)

2 Mizutani, E., and Dreyfus, S.: ‘Two stochastic dynamic programming
problems by model-free actor-critic recurrent-network learning in non-
Markovian settings’. Proc. IEEE Int. Joint Conf. on Neural Networks,
2004, Vol. 2, pp. 1079–1084

3 Si, J., Yang, L., and Liu, D.: ‘Direct neural dynamic programming’, in Si,
J., Barto, A.G., Powell, W.B., Wunsch, D. (Eds.): ‘Handbook of learning
and approximate dynamic programming’ (Institute of Electrical and
Electronics Engineers, 2004, pp. 125–151)

4 Elman, J.L.: ‘Finding structure in time’, Cogn. Sci., 1990, 14, (2),
pp. 179–211
S LETTERS 23rd October 2008 Vol. 44 No. 22

2, 2008 at 17:40 from IEEE Xplore. Restrictions apply.

