Patching task-level robot controllers based on a local p-calculus formula

Scott C. Livingston

Abstract— We present a method for mending strategies for
GR(1) specifications. Given the addition or removal of edges
from the game graph describing a problem (essentially tran-
sition rules in a GR(1) specification), we apply a p-calculus
formula to a neighborhood of states to obtain a “local strategy”
that navigates around the invalidated parts of an original
synthesized strategy. Our method may thus avoid global re-
synthesis while recovering correctness with respect to the new
specification. We illustrate the results both in simulation and
on physical hardware for a planar robot surveillance task.

I. INTRODUCTION

A major research theme of the last two decades is to
bring verification and synthesis methods to bear on problems
in hybrid systems. For example, see Davoren and Nerode
[1] and other papers in that special issue of Proceedings
of the IEEE. However, one quickly arrives at undecidable
problems (e.g., see [2], [3] and references therein). Thus a
current topic is to find interesting classes of hybrid control
systems that admit tractable synthesis algorithms—at least
in appropriate cases. A motivation for the present work is
to exploit additional structure not available in the classical
automata-theoretic formulation of reactive synthesis.

Perhaps the simplest structure provided by hybrid systems
is a notion of “localness.” Given a vertex in a discrete
transition system, how can we find other vertices that are
sufficiently similar? If the set of vertices maps into a metric
space, then immediately we can look at a ball centered on
the given vertex to form a “neighborhood of vertices.” This
is just a basic question of how to cluster data and arises in
many contexts. Similarly, a metric may be provided directly
for the nodes of an automaton, e.g., as used to formulate
robustness in [4].

In the present work, we are concerned with using localness
to estimate what parts of a control strategy must be updated
in response to a game change. In particular we consider
application of these methods in mobile planar robotics. A
typical problem in this setting is updating a map describing
the locations of obstacles and other areas of interest, such
as a charging station. One representation often used is cell
decompositions [5], which may be polygonal partitions of
part of the state space (such as position but not velocity).
If appropriate properties relating the continuous dynamics to
discrete movement among cells are satisfied [6] (essentially
so that a bisimulation is obtained), then it suffices to solve
the synthesis problem over this discrete abstraction. Forming
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discrete abstractions in this manner and then synthesizing
game strategies on the resulting game graph forms the
basis of some previous work in robotics [7], [8]. While
this situation is superficially very attractive, the number
of cells required to solve a problem may be large, and
when combined with uncontrolled environment behavior, the
cardinality of the discrete abstraction may be such that we
have gained little from the abstraction process.

An important alternative to discretization is given by
Karaman and Frazzoli, who developed RRG and—of most
relevance to this paper—an optimal and incremental algo-
rithm based on RRT* for realizing deterministic yp-calculus
formulae [9], [10]. While they address a larger class of
specifications than we do, they do not consider reactive
planning, in particular GR(1) games as we describe below.

Given that a global strategy may be hard to construct and
fragile in settings with inherent uncertainty, one may ask
whether local parts of the strategy can be updated as new data
is accumulated online. That is, can we perform incremental
synthesis by working with neighborhoods of nodes based on
metrics from the underlying continuous space?

In [11], Livingston et al. address a similar problem as in
the present work. However, they treat the synthesis algorithm
as a “black box” to be invoked with local specifications,
which are then used to mend the original strategy. Here
we explicitly propose a p-calculus formula with which to
synthesize a local strategy.

II. SYNTHESIS PROBLEM

A. GR(1) specifications and associated game

For an introduction to linear temporal logic (LTL) and
relevant theory see, e.g., [12]. Let X be a set of uncontrolled
variables, and ) a set of controlled variables. Each variable
has a finite domain, and the product of these domains
gives the discrete state set I'. Restrictions to domains of
uncontrolled and controlled variables are denoted by I"» and
T'y, respectively. Denote the projection of a state s € I' onto
the variables in X by s || x. For a set B C I, projection is
elementwise and denoted by B |lx. Hence to be precise,
'y =T Jx and 'y := T' Jy. A state taken directly
from a restricted domain will be marked with an appropriate
subscript, e.g., sy € I'x. Compositions of these to form a
complete state will be written as tuples, e.g., (sx, sy) € I.
As in the literature, we also refer to X as “environment
variables” and ) as “system variables.”

As defined in [13], a GR(1) (Generalized Reactivity of



rank 1) specification is of the form
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where 6., 05, J§,...,J5_;, and J§,...,JS_, are state
formulae on X'UY, p. is a state formula on YUYU( X, and
ps is a state formula on YUY U XU Y. Application of
the “next” operator () to a variable denotes the value taken
by that variable at the next time step. E.g., + — Qy is a
transition rule requiring that from any state where x holds,
y must hold at the next time step.

The problem setting is best viewed as a game between
the environment, who sets variables in X', and the system,
who sets variables in ). (For detail, consult the definition
of simulation game structure in [13].) The transition rules
pe and p, dictate how the environment may move from a
particular state, and how the system may then respond. The
allowed moves can be expressed in a graph like structure
called the game graph.

Given a GR(1) formula ¢ as in equation (1), a game graph
corresponding to it, denoted G, is given by (T, Ec, Es),
where

o Ec(s) :={ax €Tx | (s,ax) = pe}

o Ei(s,ax) :={ay €Ty [ (s,ax,ay) = ps}

An execution (or play) between the uncontrolled envi-
ronment and controlled system corresponds to a path on
the game graph, beginning at a state satisfying the initial
conditions 6, and 6. A strategy on a game graph specifies
a system move among those enabled at each point of an
execution. We say that a strategy is winning for a GR(1)
formula, if every path which conforms to the strategy satisfies
all system goals or blocks at least one environment goal. It is
a well-known result that for realizable GR(1) specifications,
there exists a finite memory winning strategy. Hence, we
define a strategy automaton.

A strategy automaton for a GR(1) formula ¢ is a triple
A = (V,6, L), such that V' is a set of nodes, L : V — T, and
§: (Upev{v} x Eo(L(v)) — V such that for every (v, sx),
L(6(v,sx)) bx= sx and L(6(v,sx)) Jy€ Es(L(v), sx).
We use v —5 v to denote v € 0(u, E¢(L(u))). Intuitively,
u —¢ v indicates there exists an environment move from
state L(u) such that automaton A transitions to node v in
response.

An execution of a strategy automaton is a sequence
V1V -+ - Uy such that v; —5 vi41. A trace of a strategy
automaton is a sequence siSs - --S, such that there exists
an execution vivy---v, with s; = L(v;). We say that a
strategy automaton for ¢ is winning from a set of states [
if I C L(V), and every trace of the automaton beginning at
a state in [ satisfies the environmental and system goals of
¢, that is, either there exists an environment goal J ; which
is not satisfied starting from a certain point in the trace, or
every system goal J7 is satisfied infinitely often in the trace.
We simply say that a strategy automaton is winning for ¢ if
I contains the set of states satisfying 6. and 6.

B. GR(1) synthesis algorithm

We present a method for synthesizing a strategy automaton
for a GR(1) formula. We first define a predecessor operator.
For a given set of states X C I', the predecessor operator
Pre returns all states from which, given any possible envi-
ronment move, there is some system move going to X. The
operation is a well known primitive in most algorithms for
reachability computations on game graphs or in other control
problems with disturbances. It is also sometimes written as
Q. Precisely, let X C I'. Define

Pre,(X):= {s €T | Vax € Ec(s),
Jay € Eq(s,ax) : (ax,ay) € X}. (2

We now sketch one method to synthesize a strategy
for a GR(1) specification, e.g., as described in [14]. The
present paper only addresses strategies constructed in this
manner. Considering only such strategies is without loss of
generality because a realizable specification always admits
this synthesis method. For each goal J?, i € {0,...,n—1},
the basic approach during synthesis is to find at each step,
a move taking the game strictly closer to a J;-state (a state
satisfying J;) or to move in such a way that one of the
environment liveness conditions J¢, j € {0,...,m — 1}, is
blocked. To be more precise, consider a row of the u-calculus
formula presented in [13] to compute the winning set W,
for a specification ¢,

lu,Y( \7 VX( (J: A Preg,(ZiJrl))

j=0
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where subscript addition is modulo n. For fixed values of
Z;’s, the Y operators are used to compute the sets which
reach corresponding systems goals. Let us denote the Y sets
obtained in the consecutive iterations for goal i by Y2Vl ..
These sets have the property that Y C Y;! C ---Y*, and
due to the finiteness of the state space, Yl’C = YikJrl for
some k. Let k be the minimal integer for which Y} =
V¥, Then, it also ensures that there is a strategy that
“progresses” towards the goal. For every state in Y*, k > 1,
the strategy ensures that for any environment move, there
is a system move which results in a state Yik/ for some
k' < k, or remains in some state }Qk, but violates one of
the environment goals, that is the current and next state both
violate a particular environment goal. Finally, when the Z;’s
reach the fixed points (cf. [13]), every system goal that does
not eventually globally violate an environment goal has a
strategy to move to a state in some Y} ;.

In order to propose a patching algorithm, we need to
assume that the initial strategy automaton corresponding to
the unmodified GR(1) formula has more information than
as defined previously. We use the above observations of the
synthesis algorithm to propose a data structure on the strategy
automaton, which gives an alternate characterization for the
existence of a winning strategy for the GR(1) formula.



Definition 1: A reach annotation on a strategy automaton
A = (V,4,L) for a GR(1) formula ¢ is a function RA :
V — [n]xZ4 which satisfies the following conditions. Write
RA(v) = (RA1(v),RA3(v)), and let [n] = {0,...,n — 1}
Given p < ¢, the numbers between p and q are p+1,...,q—
1, and if ¢ < p, then the numbers between p and ¢ are
p+1,....n—1,0,...,9— 1.

1) RA3(v) =0 iff L(v) is a RA;(v)-system goal.

2) For each v € V and sy € E¢(L(v)), if RAa(v) # 0,

then RA;(v) = RA1(d(v,sx)) and either

a) there exists an environment goal J7 such that
both L(v) and L(6(v,sx)) do not satisfy J¢, or

b) RA3(v) > RA2(6(v, sx)).
3) For each v € V and sy € Eo(L(v)), if RAs(v) = 0,
then there exists a p such that for all » between RA; (v)
and p, L(v) is r-system goal, and RA;(d(v, sx)) = p.

Remark 2: A strategy automaton and a reach annotation
can be extracted from the Y* sets defined in the synthesis
algorithm above. While determining each node during the
construction of an automaton, computation of a reach anno-
tation requires a constant number of additional steps. (Thus
it affects the leading constant hidden by Big-O notation.)

The next theorem provides a characterization of a winning
strategy in terms of the reach annotation.

Theorem 3: There exists a winning strategy automaton A
for a GR(1) formula ¢ if and only if there exists a strategy
automaton with all initial states for ¢ and with a reach
annotation for A.

Proof: The “only if” part follows from the above
remark. Conversely, let A be a strategy automaton and RA
be a reach annotation on A. Let s be an initial state for .
By hypothesis there is a node vy in A with L(vg) = so.
Let vgvive--- be an infinite execution originating at vg.
Note that by definition of strategy automata, such an infinite
execution will occur if the environment moves are always
possible (i.e., in E¢(L(v;)) for each v;). Otherwise, halting
on a finite execution means that the environment has violated
the assumption part of the GR(1) formula 1) and therefore
the resulting trace is winning. There are three possibilities
for the execution vgvvg - - -.

1) First, there is some k such that RAs(v;) =
RAs(viy1) # 0 for ¢ > k. Then by definition
of reach annotation one of the environment goals is
indefinitely violated and therefore the corresponding
trace is winning.

2) Second, there is some k such that RAj(v;) =
RA5(viy1) = 0 for ¢ > k. Then all system goals are
satisfied at each step of the trace after k, and therefore
the trace is winning.

3) Finally, there are infinitely many ¢ where RA5(v;) #
RAo(vi41). If there exists k such that RAs(v;) <
RA5(viy1) for i > k, then because there are infinitely
many indices where this inequality is strict, it must
be that an environment goal is violated at v; onward
and therefore the corresponding trace is winning. Oth-
erwise, there are infinitely many ¢ where RAs(v;) >

RA2(viy1). Because RA3(V) is bounded below by
0, it follows that there are infinitely many indices ¢
where RAs(v;) = 0. Then, the third property of reach
annotation ensures that all system goals are visited, and
therefore the corresponding trace is winning.

III. PATCHING ALGORITHM

In this section, we propose an algorithm for patching a
strategy or controller when there is a change in the edge set
associated with a game graph. Let us fix a GR(1) formula ¢
and a strategy automaton A = (V,4, L) for ¢ with a reach
annotation RA for the rest of the section.

A. Game changes

Suppose that the edges of the game graph associated with
the GR(1) formula ¢ change from E, and E, to E.” and E,’,
respectively. This affects a winning strategy automaton A for
( in two ways:

1) (removal of outgoing edges from controlled vertices)

Some control decisions can become unavailable. Let v
be a node in A affected in this manner. Then:

Cond; (v) :=Fsx : L (0(v,sx)) Iyg Es'(L(v), sx)-
“4)
2) (addition of outgoing edges to uncontrolled vertices)
The environment has new moves. A node v is affected
in this manner if:

Condy(v) := E¢'(L(v)) \ Ec(L(v)) #0.  (5)

The set of all nodes v satisfying Cond; or Cond, are said
to be the affected nodes of A due to the changes E,.’ and
E.’ to the edges E. and E of the game graph of .

Note that we do not consider the case where outgoing
edges are removed from an uncontrolled vertex. Such an
edge change is irrelevant for strategy automata constructed
according to the preceding section. By contrast further anal-
ysis is needed if, for instance, one allows strategies that
prefer reaching states violating environment goals /7 rather
than system goals J?, or strategies that predicate arbitrary
decisions on environmental satisfaction of each J7.

B. Overview

Consider the case where parts of the specification abstract
the behavior of a dynamical control system. The precise
meaning of “abstraction” is beyond the scope of this paper;
we refer the reader to [6] and references therein for details.
Suffice it to observe that, while the abstraction contributes
variables (i.e., elements of X U ))) and transition rules (i.e.,
conjuncts in p. or p; recall that for state formulae f and
g, we have that O(f A g) = (O f) A (dg)) in a transparent
manner, the underlying dynamics provide additional structure
we hope to exploit. To that end, we assume we can compute
a set of vertices in the game graph (I',E., Es) that is
“local” in some sense. For instance, this could be obtained
by computing the norm ball centered at some state of the
underlying dynamical system and finding all vertices in T’



corresponding to states contained in that norm ball [11].
We call this set N (recall N C I') and refer to it as the
“neighborhood of vertices.” This terminology is motivated by
how we construct N rather than a topological space defined
for the game graph (T, E., Es). The precise conditions under
which N possesses desirable properties, such as being a
small subset of I' or preserving local connectivity of the
graph (T, E,, E), is the subject of future work.

Note that the reach annotation RA defines a partition
of the nodes in A such that the nodes with RA;(v) = i
correspond to those reaching system goal ¢ or eventually
globally violating an environment goal. Upon reaching a
state satisfying J7, the goal mode is incremented, modulo
n, and the process continues. (Note that a state may satisfy
more than one system goal.) The broad idea of the patching
algorithm is to identify the affected nodes corresponding to
each system goal and locally modify the automaton.

Suppose that the set of affected nodes due to the edge
changes is non-empty. Let us denote the modified formula
as ', which is the same as ¢, except that the p. and p, are
replaced by pl, and p’, corresponding to edge changes in F,
and F,. For each goal mode ¢, let U; be the set of nodes
in the strategy automaton affected by the change, which are
not themselves labeled with a goal state. More precisely,

Up:={veV|L@)E J ANRA(v) =1)
A (Cond, (v) V Conds(v)) }.  (6)

Observe that these sets are disjoint, and that one or more of
them may be empty. Recall that nodes labeled with the same
state have different goal modes. This is assumed without loss
of generality because otherwise the strategy is redundant.

Next, we define an operator for producing local strategies.
Let N and B C T be sets of states. Define a p-calculus
formula

Local(B, N) := pY ( Wv VX (B v (Prewr(Y) A N)
j=0

v (= APreg (X) A N) )> (7)

This formula can be viewed as a truncated form of that
presented in [13] (also see equation (3)) to compute the
winning set for a GR(1) specification. Notice that states
returned by the Pre operation are restricted to N. Let us
denote the set of states in the fixed point computation of
Local(B, N) as [Local(B,N)]. The result is a strategy
which ensures that either some state in B is eventually
reached or some environment goal is eventually persistently
violated. Let us denote by (A’,S1,Ss) the fact that A’ is
a strategy automaton for ¢, which is winning from any
state in S; with respect to reaching some state in So, or
eventually globally violating an environmental goal of ¢’
(same as that of ). Note that there exists a A’ such that
(A’, [Local(B, N)], B). It can be computed using the fixed
point algorithm defined by the formula Local(B, N).

Further, we can ensure the existence of the following
partial reach annotation.

Theorem 4: Given (A’,C, B), where A’ = (V,4,L) and
C C [Local(B, N)], there exists a partial reach annotation
RA : V — {i} x Z, for any ¢ such that the following hold:

1) RA3(v) =0 iff L(v) is in B.

2) Foreach v € V and sy € E¢(v), if RA3(v) # 0, then

either

a) there exists an environment goal J; such that
both L(v) and L(6(v,sx)) do not satisfy J¢, or
b) RAs(v) > RA2(6(v, sx)).

Proof: This is immediate from the definition of the
p-calculus formula (7) and using the same construction
from intermediate values of the fixed point computation of
[Local(B, N)], as in Remark 2. [ |

Remark 5: 1t is obvious from the proof that the above
theorem is constructive, that is, one can compute a partial
reach annotation for any (A’, [Local(B, N)], B).

We assume at least one of the states in the automaton
satisfying each goal remains feasible, i.e., there is some way
to drive the play to it after the edge set change. In other
words, we assume that we do not need to introduce new goal
nodes into the automaton A. By construction of the strategy,
the goal mode must change when a play leads to one of
these nodes. Under this assumption, it suffices to adjust how
we reach a goal state, but once there the play will be at an
existing node of A.

In summary, the main steps of the proposed method are as
follows. First compute a neighborhood N C T of states based
on proximity in the underlying continuous space, such that
N is sufficiently large to properly contain all states of nodes
in J; U;. See discussion in Section IV about possibilities for
choosing N. For each goal mode 7 with nonempty U,

1) Create the set N* of nodes with goal mode i and
corresponding state in N.

2) Create the set Entry’ of labels of nodes in N* that can
be entered from outside N? in the original strategy.
Also include in this set the current state of the play
(assuming the algorithm is being used online, we must
address how to move from the current position).

3) Compute the minimum RA,(v) value (related to the
reach annotation yielded by the automaton) over all
nodes in U; U (L™ (Entry') NRAT (7)), and call it
m*.

4) Create the set Exif’ of states of nodes v in N’ with
RA2(v) less than m*. Precisely,

Exit' := {L(v) |v € N",RAz(v) <m*}.

5) Compute [Local(Exit', N)].

o If Entry’ is not contained in [Local(Exit’, N)],
then the local problem is declared unrealizable
and the neighborhood N must be adjusted and the
above steps repeated.

e Otherwise, compute the local strategy
(A%, Entry' Exit'), and use it to mend the
original strategy A by replacing nodes in N with



the nodes in A’, and adding appropriate edges
corresponding to the edges into the entry states
and the edges from the exit nodes in A.

Intuitively, the sets are constructed such that if we can get
to Exit from each node in Entry, then from the definition of
reach annotation it must be that distance from the current
target system goal has not increased and that there is not a
path under the new automaton A’ leading back to Entry.

To improve efficiency, Pre operations in the iterations are
restricted to the neighborhood N. Note that upon reaching a
“border node,” we must have arrived at a state in Entry (by
definition) and therefore restricting the Pre operation to not
go outside N does not constrain the method.

When synthesizing for each U, incorporate the reach
annotation from the patch into the original automaton A by
scaling all RAs values of A such that there is sufficient
“room” for the new range of reach annotation values from
the patch, after offsetting by the value at the lower attachment
point. The resulting automaton A’ then has reach annotation
RA’, as shown in Section III-D. Thus the proposed method
can be applied to A’, the output of which can again be
patched, and so on.

C. Formal statement

A precise statement appears in Algorithms 1 and 2. Some
clarifications follow.

« NCTisa precondition asserting a set of neighborhood
states is given. Note that N may be defined by a
predicate on X' U ).

o Line 20 finds the minimum positive integer that ensures
the distance between the Entry and Exit sets (given by
m* —m,) is greater than the range of reach annotation
values in the local strategy (given by miocal)-

D. Analysis

We begin with some remarks about the algorithm.

Remark 6: For each i € {0,...,n — 1}, Exit’ (see defi-
nition on Line 12 of Algorithm 1) does not share any states
with Entry’ or L(U;). Precisely,

Exit* N (Entry* U L(U;)) = 0.

As described in Section II-A, the safety formulae p. and
ps of a GR(1) specification can be equivalently expressed by
a game graph (I", E, Es). In our analysis below we consider
changes to p. and pg, which is equivalent to the removal or
addition of edges in F, denoted by EAE’ # () (where E’ is
the new edge set). The other parts of the specification remain
unchanged.

Let ¢ be a GR(1) specification as in equation (1). Denote
the corresponding game graph by (T, E., E). Suppose that
the safety formulae p. and p, of ¢ are changed, and call the
modified specification ¢’ with safety formulae p/, and p’,. Let
A = (V,6,L) denote the original strategy automaton with
reach annotation RA, and suppose N C I' is chosen such
that the patching problem is feasible, i.e., the algorithm ter-
minates producing a modified automaton A’ = (V',¢', L').

Algorithm 1 Find local strategies

1: INPUT: GR(1) formula ¢, strategy A, reach annotation
RA, modified formula ¢’, neighborhood NcT

2: OUTPUT: set of triples (A’, Entry', Exit') with partial
reach annotation RA’

3: Patches := )

4: Find affected node sets Uy, Uy, . . .

s: for all 5 such that U; # () do

6 Ni:={veV|L()e N,RA (v)=1i}

7

8

9

,Un—1 /lequation (6).

if U; \ N* # () then
error — N* is too small.
. end if
1. Entry’ := {L(v)|v € N',3u € V\ N': u—s v}
1 m” = minvEU,iU(L*1(Enrryi)ﬁRAl’l(i)) RA3(v)
122 Exit' := {L(v) [v € N", RA3(v) < m*}
13 if Entry’ ¢ [Local(Exit', N))] then

14: error — local problem unrealizable.
15:  else
16: Synthesize A’ such that (A°, Entry', Exit') with
partial reach annotation RA®
17: Patches := Patches U
{((Ai, Entry', Exiti) N, RAi) }
18:  end if
19: end for

20: return Patches

Theorem 7: The output of Algorithm 2, namely, A’ and
RA’ is such that A’ is a strategy automaton for ¢’ and RA’
is a reach annotation on A’ with respect to ¢’. Hence, A’ is
a winning strategy automaton for ¢’

Proof: By Theorem 3, it suffices to show that A’ is a
strategy automaton, and that RA’ is a reach annotation for it.
For each system goal mode ¢, on lines 24-28 of Algorithm 2
all nodes labeled with states affected by the GR(1) formula
change to ¢’ are replaced. Thus, all nodes in A’ have an
outgoing edge for each possible environment move, leading
to a permissible system move. Therefore A’ is a strategy
automaton.

By hypothesis, the original strategy automaton A has a
reach annotation RA and each patch automaton A° such
that (A?, Entry', Exi') has partial reach annotation RA®. If
describing a strategy automaton, a partial reach annotation
may be regarded as a reach annotation with constant RAi.
From these observations, it suffices to consider the transitions
from A into A?, and A? into A. Lines 10-23 of Algorithm 2
ensure that RA, is nonincreasing across these transitions. It
follows that RA’ is a reach annotation on A’. [ |

IV. EXAMPLE SCENARIOS AND EXPERIMENTS

The selection of the neighborhood N plays a crucial role
in our proposed method, but may not admit a general form.
Instead, one may need to have templates for constructing
N for various problem classes and hybrid control systems.
Below we consider discovery of a static obstacle online.
Some other possibilities include the following.



Algorithm 2 Merge local strategies into the original

1:

28:
29:

INPUT: GR(1) formula ¢, strategy A, reach annotation
RA, modified formula ¢’, neighborhood N C I', and
Patches from Algorithm 1.
OUTPUT: Strategy automaton A’ for ¢’ with reach
annotation RA’
for all ((A' = (V%' LY),Entry’ Exit'), N',RA") €
Patches do
for all s € Entry’ do
find u € V¥ such that L'(u) = s
for all v € V \ N’ such that v —4 u’ for some
v € N* with L(u') = s do
replace transition v —5 u’ of § by v —s u
end for
end for
M 2= MAX e 11 (Exir ) \RAT L (9) RA2(v)
for all s € Exit* do
for all w € L' (Exit')NRAT' (i) with u —5 v do
append transition v’ —s v for every u’ € N*
with Li(v/) = s
end for
end for
Miocal = MaAXy ey RA72 <U>
for all v € V* do
RA%(v) := RAL(v) + m.
end for
Q= minkéZ+,k(m*—m*)>m,,,m, k
for all v € V with RA;(v) =i do
RA2(v) := - RA3(v)
end for
V= (V\N)wV?
Remove edges from § which intersect with N°
Add all edges from §% to §
Extend L to include nodes in V*
A" = (V,6,L) and RA" := RA.
end for

N could be a norm ball centered at some point of
interest and scaled as needed. This is the heuristic
used in [11], where the radius is incremented until all
local problems are realizable, or the global problem is
recovered.

N could be obtained from the short-time reachable
space computed for the given robot dynamics. This
could be useful for under-actuated systems.

If a nominal plan is obtained using a gradient-based
method as in [15], then N may be iteratively expanded
toward a goal, while allowing sufficient “width” for
reactivity in an unknown environment.

To find an appropriate neighborhood N after obtain-
ing a finer resolution cell decomposition, include all
strategy automaton nodes with state corresponding to
refined cells. Depending on dynamics and continuity
of the underlying system, we also include immediately
neighboring cells in N. Selecting which unrefined cells

u

Fig. 1. 4x20 gridworld. As a graph, it is 4-connected, i.e., moves can only
be “up,” “down,” “left,” or “right.” I indicates the initial robot position, G
indicate goal cells. The gray cells can be occupied by a dynamic obstacle,
which must repeatedly visit the E cell (environment liveness condition).

to include appears easier in some cases, such as for
linear systems, and is the subject of future work.

A. Unreachable cells

One of the basic approaches to robotic navigation is
decomposition of the workspace (e.g., an office floor) into
finitely many cells (for an overview, see [16] and [5]). If
we can assure the existence of dynamical control laws for
steering the robot among these cells, then the cell decom-
position may be representable as a finite directed graph,
and hence planning over the workspace becomes a reactive
synthesis problem. To cope with uncertainty of the space
being navigated, a robot may build and update a map as
new sensor data is collected online. An important class of
such changes is the case where a cell becomes unnavigable.
For instance, there may be a static obstacle. In this scenario,
the strategy must be adjusted to move around the occupied
cell.

As preliminary evaluation of the proposed method, we
conducted a simulation experiment for this scenario in a
small gridworld problem. An illustration of the setting is
given in Figure 1. Random gridworlds were generated for
block densities of 0.1, 0.3, 0.5, and 0.7. E.g., a block density
of 0.1 means that 10% of cells are occupied. At each time
step, the robot can move “up,” “down,” “left,” or “right” (i.e.,
the world is 4-connected). There are two goals and one initial
position, all randomly placed (but not overlapping). A single
dynamic obstacle is also present. It must always eventually
return to its base cell (labeled E in Figure 1), but on any
particular instant may be at most one step away from its base
(gray cells in Figure 1). The dynamic obstacles base cell is
chosen randomly, and there may exist a plan for the robot
to avoid it entirely. For each trial, a gridworld problem is
randomly generated, solved to obtain a nominal strategy, and
then a new static obstacle is introduced. The location of the
new block is random but restricted to guarantee interference
with the nominal strategy. For 0.7 density trials, the world
has size 6 x 20; for all others, it has size 4 x 20.

The neighborhood N is formed by a 3 x 3 subgraph
centered on the newly blocked cell. Times required for global
re-synthesis and times for our proposed method are shown
in Figure 2, where two substantial outliers were excluded for
clarity. Outliers were (319.25,1.51) and (88.02, 2.18), where
(global, patching) times are in seconds. Several statistics
are given in Table I. Figure 3 shows mean run-times for
global re-synthesis and the proposed method with respect to
gridworld block density.



TABLE I
RATIO OF TIME TO RUN OUR PATCHING ALGORITHM TO GLOBAL
RE-SYNTHESIS FOR RANDOM “UNREACHABLE CELL” PROBLEMS.

block density ‘ N ‘ min ‘ mean ‘ max ‘ std dev

1 100 | 0.0047 | 0.1902 | 0.5314 0.0952

3 100 | 0.1391 | 0.4039 | 0.7424 0.0950

5 98 | 0.2581 | 0.5561 | 0.8940 0.0985

7 108 | 0.3439 | 0.6309 | 1.3276 0.1696
> ! + density 0.3

! e+ee density 0.5
25 ! +++ density 0.7
' . eee density 0.1

Patching time (s)

10 15
Global re-synthesis time (s)

Fig. 2. Simulation run-times of global re-synthesis and our proposed
method after introduction of a static obstacle. Slope 1 (unity ratio) is
indicated by a dashed line. Does not include two outliers: (319.25,1.51)
and (88.02,2.18), where (global, patching) times are in seconds.

V. EXPERIMENTAL DEMONSTRATION

In addition to simulations, the patching algorithm was
demonstrated on a tracked robot navigating through a planar
environment with unexpected static obstacles. The environ-
ment through which the robot navigates is a 3m x 3m tiled
floor populated with stationary obstacles. Each goal J; is
inserted in software, and an automaton is synthesized to
move between them. Patches to the strategy automaton are
made as new obstacle position data become available online.

The robot used in these experiments was an iRobot
LANdroid (Figure 4). The LANdroid is equipped with a
Hokuyo scanning range finder (URG-04LX-UGO01), used in
conjunction with an overhead position tracking system based
on FView [17] to determine the position and heading of
the LANdroid. ROS [18] nodes were used to receive data
from the range finder and send control commands to the
LANdroid, as well as to receive position information; the
majority of processing was done off-robot. Plans and patches
were synthesized using TuLiP and grlc.'

The discrete abstraction used in this hardware setup took
the form of a quadtree data structure. Nodes of the quadtree
correspond to regions in a planar environment, and refine-
ment and coarsification of quadtree nodes represent the
splitting and joining of regions to and from four interior
subregions. The level of refinement in a given quadtree
cell corresponds to occupancy information retrieved from a
probabilistic occupancy grid map populated by data from the
laser range finder. The intermediate occupancy grid helps

Uhttp://tulip-control.sf.net ; http://scottman.net/2012/grlc

e—e global re-synthesis
a—a local patch
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Fig. 3. Mean run-times of global re-synthesis and our proposed method
after introduction of a static obstacle. Notice that for increasing densities,
global re-synthesis takes less time, as may be expected given fewer reachable
cells in the gridworld.

Fig. 4. iRobot LANdroid platform used in experiments. Hokuyo scanning
range finder and IR LEDs (with battery packs) can be seen.

avoid unnecessary refinement of the quadtree due to noise.

The quadtree utilizes tesseral addressing [19] to allow for
rapid adjacency calculations. Tesseral addresses are well-
suited to representing hierarchical tessellations of planar
spaces. Here, tesseral addresses take the form of quaternary
strings which uniquely address a region in a 2-D plane. For
example, the tesseral address “30” would be read as “the
Oth subregion of the 3rd subregion of the plane”. In this
implementation, the neighborhood N was determined based
on cell adjacency and ancestry in the quadtree.

The process of patching in the context of these experi-
ments can be seen in Figure 5. A video demonstration is
available at http://vimeo.com/49653485. Initially, a
path visiting two goals (green cells) is being pursued over
the quadtree according to a nominal strategy automaton. As
new occupancy data becomes available online, the automaton
must be patched in response. N can be seen in red (the
refined quadtree cell) and orange (non-refined neighbors);
the partial resynthesis is made using cells within this neigh-
borhood, and a correct strategy is recovered.

VI. CONCLUSION AND FUTURE WORK

It follows from Theorem 7 that given an appropriate
initial strategy, we may patch-and-repeat indefinitely while
maintaining correctness. However a critical issue in this
process is selection of N and realizability of each succes-
sive specification. While these are informally explored in



Fig. 5. Path from a plan before (top), during (middle), and after patching.

the computational experiments presented in Section IV, a
thorough investigation remains for future work.

Current laboratory work described in Section V has fo-
cused on demonstrating viability and establishing a hardware
setup to be used for future experiments. Future work will
include statistical comparison of time required when patching
and when fully resynthesizing in robot navigation problems,
including nondeterministic elements such as moving obsta-
cles.

The key insight of the present work is twofold. Let A be
the original strategy automaton. First, by finding the set U;
of nodes in A that are affected for each goal J;7, we exploit
the case of problems where system goals correspond to
disconnected regions of a continuous space. In this case, only
efforts to reach some of the goals may be affected by a game
graph change. For instance, this naturally occurs in robot
surveillance problems, where different rooms in a building
must be visited. Second, our local p-calculus formula (7)
has alternation depth of one (cf. [20]), and indeed, given
environment goals, is just a reachability computation around

a cluster of affected vertices in the game graph. In future
work we will investigate the computational complexity of
the proposed method.
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