
 

Abstract—A  common  challenge  in  autonomous  mobile 
applications is maintaining controlled movement of an agent on 
unknown  or  unanticipated  surfaces.  The  Tekkotsu  application 
framework, built to facilitate research with the Sony AIBO robot, 
has basic  walking  functions but  does not  include  any adaptive 
behavior. Through the use of an indoor vector-tracking system, 
we attempt to implement a reinforcement learning algorithm, Q-
learning, to intelligently learn new surfaces and thus improve the 
existing walking mechanism.

I.INTRODUCTION

 With the advance of technology, wireless sensor networks 
are becoming more and more useful. These networks are used 

for a variety of purposes including technological advances in 
medicine, military, traffic, and manufacturing. As the demand 
for these networks increases, the need for more accurate and 
intelligent designs rises. 

 

Benefits  of  wireless  sensor  networks  incorporate  ease  of 
operation,  simplified  systems,  compact  sensors,  and  cost 
efficiency.  Challenge  arises  in  developing  simplified 
modifications to wireless nodes and systems. Researchers and 
developers strive to design inexpensive and efficient networks 
that ultimately benefit society.

Sony’s  development  of  the  AIBO  robot  eases  the 
development of many experiments including those containing 
wireless  sensor  networks.  The  AIBO’s  agility  and  multi-
faceted  performance  provide  a  flexible  environment  for 
research. Due to high demand, Sony released a low-level open 
source toolkit called OPEN-R to provide access to the AIBO 
hardware for  software developers.  The Tekkotsu application 
development  framework  [1],  developed  at  Carnegie  Mellon 
University (CMU),  is built  on top of OPEN-R to provide a 
richer and higher-level environment for programming the Sony 
AIBO. The implemented walking system, however, does not 
include  any  dynamic  movement  adjustments  for  various 
walking surfaces, and thus often fails to perform correctly on 



difficult  surfaces, particularly those with low coefficients  of 
friction.  An  attempt  to  solve  this  problem  is  presented  by 
adding  an  intelligent  feedback  layer  on  top  of  the  current 
walking system through a  reinforcement  learning algorithm, 
specifically Q-learning. 

The general goal is to create an autonomous walking robot 
that is able to correct its step movements to follow a specified 
path.  A  program is  developed  to  build  a  table  of  surface-
dependent  values  intended  to  enhance  the  robot’s  decision 
making when choosing a specific action. The program uses a 
wireless sensor network to determine the location of a mobile 
robot.  The  mobile  robot,  a  Sony  AIBO  (robotic  dog),  is 
programmed  to  walk  in  a  line  along  a  desired  path. 
Reinforcement learning, a type of machine learning, creates a 
system  of  rewards  based  on  an  array  of  combinations  for 
predefined states and actions. This information is used to aid 
the robot in following the desired path.

A long-term goal  is  to  enhance  the  software  to  create  a 
highly versatile program that  will allow the robot to choose 
paths efficiently in unknown environments.

II. LABORATORY ENVIRONMENT AND BACKGROUND INFORMATION

The  Sony  AIBO  robot  and  Massachusetts  Institute  of 
Technology  (MIT)  Cricket  wireless  sensor  nodes  are 
conjunctively deployed to create an autonomous walking agent 
capable of correcting actions to strictly follow a desired path. 
The  setup  includes  the  Sony  AIBO,  Tekkotsu  software, 
MATLAB software, and the MIT Cricket system. 

A basic foundation for commanding the Sony AIBO robot is 
laid  out  in  the  Tekkotsu  software  developed  at  CMU  [1]. 
Tekkotsu provides access to  many high-level commands for 
the Sony AIBO including movement,  visual,  and behavioral 
controls  which  can  be  studied  on  the  Tekkotsu  website. 
Specifically for this project, Tekkotsu aids in controlling the 
walking parameters of forward velocity, angular rotation, and 
side-stepping of the robot. 

A MATLAB interface is used to simplify the deployment of 
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Fig. 1.  Raw measurements of distance between a beacon node and a listener 
node.

Tekkotsu. The interface, designed at University of Tennessee 
at  Knoxville  by  Dr.  Itamar  Elhanany and  students  Richard 
Wunderlich,  Travis  Goodspeed,  allow  all  aspects  of  the 
project  to  be  run and analyzed entirely with the MATLAB 
software environment (produced by The MathWorks, Inc.).  In 
short, a Java class is written to facilitate creation of a telnet 
connection through MATLAB to an extension of the Tekkotsu 
software,  called  a  “behavior,”  which enables  control  of  the 
walking parameters of forward, rotational, and perpendicular 
velocities [2].

The MIT Cricket system consists of wireless nodes that can 
act as either listeners or beacons [3]. The beacons operate by 
simultaneously  emitting  radio  waves  and  ultrasonic  pulses, 
which are received by the listener nodes. The difference in the 
speed of sound and the speed of light allows the distance of the 
beacon node to be determined by the listener node using the 
time delay between arrivals of the radio wave and ultrasound 
signals. This measured distance is accurate to about 1 cm for 
stationary nodes [4], though in testing this project it is found 
that  distance  error  is  usually  about  3  or  4  cm for  moving 
nodes.

The  default  arrangement  of  Cricket  devices,  that  is 
stationary beacons and mobile listeners, can not be used in this 
setup  since  the  listeners  passively  calculate  distance 
measurements,  while  a  component  external  to  the  AIBO 
requires  live access  to  distance  data.  A modification  of  the 
Cricket system to allow tracking of a vector, consisting of two 
beacons, through space was designed by Richard Wunderlich 
and several others in [5]. Their vector-tracking system is based 
on trilateration, similar to GPS [6]. Operation involves three 
stationary  listeners  of  known  relative  positioning  acquiring 
distances of two mobile beacons and relaying this data to one 
of  the  listeners  which  is  attached  to  a  computer.  Finally, 
software  on  the  computer,  such as  MATLAB,  can  use  this 
distance data and the known listener positions to determine 

Fig.  2.   Filtered  measurements  of distance  between a  beacon  node  and  a 
listener node.

coordinates for each of the two beacons, forming a vector. The 
paper  that  introduces  this  tracking  system  includes  an 
argument that an active mobile architecture (moving beacons) 
helps  meet  the  so-called  simultaneity  condition  for 
trilateration,  thus increasing position  accuracy. Whether this 
improvement outweighs loss of some original Cricket design 
goals, particularly privacy, is addressed in [7]. However, for 
this  application,  the  requirement  of  external  computation  is 
sufficient to select an active mobile architecture.

Initially, three listener Cricket nodes are placed to form a 
coordinate  axis  on  the  ceiling  enclosing  an  area  of 
approximately 3 square meters, and two Cricket beacon nodes 
are attached to the moving Sony AIBO. To ensure precise time 
readings  of  radio  and  ultrasonic  transmissions,  the  beacons 
must  be  pointed  directly  at  the  listeners.  As  the  angle  of 
deviation  of  the  beacon’s  ultrasound  transmitter  from  the 
listener’s  receiver  increases,  the  error  of  beacon  distance 
calculations also increases. In certain positions on the floor, 
the  inaccuracy  from  AIBO-mounted  beacon  to  listener  is 
substantial, and regions exist where only two of the listeners 
can hear a beacon, thus preventing calculation of that beacon's 
coordinate. To address these problems, a fourth listener node 
is  added  for  redundancy;  overall,  the  four  ceiling-mounted 
listeners form a 152 cm by 183 cm rectangle. Several additions 
to  the  original  vector-tracking system software are  made to 
handle the new fourth stream of distance measurements. After 
testing, this redundant  node  greatly reduces the presence of 
“dead spots”.

Another problem, inherent to the Cricket system, is random 
noise in distance measurements. Major outliers, on the order of 
20 cm from an expected coordinate,  are easily detected and 
filtered.  However,  smaller  variations  in  beacon-listener 
distances  cause  errors  in  trilateration  results  which  are  not 
easily distinguished from correct  coordinates.  To reduce the 
effect of this “coordinate noise,” a filter is applied directly to 
raw beacon-listener distance data as they arrive to the external
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Fig.  3.   The laboratory setup  for  this  project.  Cricket  listener  nodes  were 
attached on ceiling above testing surface.

controlling  software.  Figure  1  contains  an  example  of 
consecutive  readings  for  a  specific  beacon  by  one  of  the 
listener nodes. The cause of “coordinate noise” occurs during 
the first 19 measurements of the example; the major outlying 
distance at sample number 40 is easily detected. Filters tested 
to reduce noise are a running mean of the current and previous 
distances,  a  running mean of  the last  three  distances,  and a 
predictive filter based on linear progression of previous two 
distances. For this application, the results are best with the first 
filter, indicated in discrete-time by y[n] = 0.5(x[n] + x[n-1]) 
where  x  is  the  raw  distance  and  y  is  the  value  used  for 
processing. A figure of the result  of running the samples of 
Figure 1 through this filter is in Figure 2. The effect of the 
noise in the first 19 measurements is somewhat reduced while 
allowing for  sudden changes in walking movements to pass 
through the filter.

The  AIBO  robot  “learns”  how to  walk  on  new surfaces 
through  the  implementation  of  Q-learning,  a  type  of 
reinforcement  learning.  The  general  process  involves  the 
selection of an action based on the current state of the agent 
using  a  policy.  The  state  in  this  setup  consists  of  two 
components: orthogonal distance from the ideal walking path 
and orthogonal velocity relative to the ideal path. Thirty-five 
states are defined, with seven distance ranges and five velocity 
ranges. Five actions, which correspond to rotational velocity of 
the  AIBO,  are  also  defined.  In Q-learning,  the  action-value 
function for state st and action at is Q( st, at ) defined by

Q s t , at Q  st , a t
 [r t1max

a
Q s t1 , a−Q st , a t]

where st means the tth state,  α and  γ are constants between 0 
and 1, and r is the reward for a given state. After the detection 
of the current state, the Q(s,a) value for the previous state and 
the chosen action, which apparently led to the current state, is 
updated based on this formula. To maintain such values as the 
optimal Q function is approached, a table of Q(s,a) values is 
kept. In this paper, two policies are used: a reference and  ε-
greedy. A reference policy is useful to help an agent build a 
reasonable initial Q(s,a) table without directly relying on this 
table for action selection. The  ε-greedy policy selects, for a 
given  state  s,  the  action  a  with  maximum  Q(s,a)  with 
probability 1-ε (usually 0.8 to 0.9) or explores other actions 
(non-maximum) with  probability  ε (about  0.2  to  0.1).  The 
general  goal  of  this  algorithm,  as  with many reinforcement 
learning methods, is to maximize long-term reward. A more 
detailed treatment of Q-learning and reinforcement learning in 
general can be found in [8].

All of these components work together to form a complete 
system that  enables  a  walking agent,  specifically the AIBO 
robot,  to  adjust  to  unknown  surfaces.  Because  the  AIBO 
cannot  directly  sense  the  direction  it  is  facing,  the  ideal 
forward  walking  path  is  determined  by  acquiring  several 
position vector samples  and then creating a line in memory 
that  represents  the  desired  path.  Thus,  the  accuracy  of  the 
system  largely  depends  on  the  accuracy  of  this  detected 
desired path. That aside, to understand the overall system, a 
somewhat  simplified  explanation  of  the  acquisition  and 
processing of a single detected vector is as follows. First, each 
of the two beacons attached to the AIBO broadcasts a radio 
frequency  (RF)  and  ultrasound  (US)  signal  pair.  All  four 
listeners  hear  this  signal  pair  simultaneously  and  use  it  to 
calculate their  individual distances to that  particular  beacon. 
Then, each listener not directly attached to a computer (three 
total) wirelessly (over an RF band) sends its distance data to 
the listener which is attached to a computer. As the distance 
data arrives, in the form of packets containing beacon-listener 
identifications and distance measurements, it is sent through a 
serial  stream to the external computer.  Next,  the MATLAB 
script, which largely forms the heart of this system and which 
is listening to the serial port, receives this raw data and applies 
the filter to it. Once enough data measurements have arrived 
(at least three per beacon), the script performs trilateration to 
find the xyz-coordinate of each beacon, forming a vector. This 
coordinate is analyzed to determine the corresponding state of 
the agent. Using the history of previous state-action pairs and 
the reward detected for the current state, the table of Q(s,a) is 
updated. The selected policy is then applied to this state and an 
appropriate action is selected. This action, which corresponds 
to  a  rotational  velocity,  is  sent  to  the  AIBO  using  the 
MATLAB interface to Tekkotsu, and finally the AIBO adjusts 
its movement as commanded, repeating the selection process 
for the duration of the episode. Each iteration of this process, 
occurring for  each coordinate  reading and processing, takes 
approximately 0.61 seconds. This value represents the median 
time of a set of 1765 samples (mean is 0.72 seconds).
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Fig. 4.  The walking path of the AIBO without corrective actions. The circles 
represent sample coordinates while the solid line represents the desired path.

III.EXPERIMENTAL RESULTS

As  touched  on  in  the  explanation  of  Q-learning  in  the 
“Background Information” section, training the walking agent 
for a given surface is performed by initially using a training 
reference policy to hasten convergence of values in the Q(s,a) 
table and then switching to an ε-greedy policy in which the 
agent strongly favors (with 0.8 to 0.9 probability) maximizing 
Q(s,a)  from  its  current  state.  After  the  ε-greedy  policy  is 
selected, entries in the agent's Q(s,a) table approach, at least 
theoretically,  their  real  values,  thus  optimizing  reward  and, 
accordingly, the walking behavior.

As a control, twenty walking episodes are recorded with no 
corrective action, which means a  simple forward velocity is 
sent  alone  to  the  Tekkotsu  software of  the  AIBO robot.  A 
sample plot of such movement can be seen in Figure 4, where 
each circle represents a coordinate read by the vector-tracking 
system. The agent gradually deviates from the desired forward 
path, indicated by a solid line. Along with results for reference 
policy  and  ε-greedy  policy  performance,  which  will  be 
explained  in  the  next  two  sections,  Table  1  contains  the 
maximum, median,  and mean orthogonal distances from the 
desired  path  during  all  20  episodes.  Also,  Table  2  lists 
portions of orthogonal distances which are less than 1 cm, 3 
cm, and 5 cm from the ideal path. Comparisons are made after 
explanations of the two policies are given.

A.Reference Policy
In  Q-learning,  the  goal  of  a  reference  policy  is  to  aid 

development of values in the agent's Q(s,a) table while 

Fig. 5.  The walking path of the AIBO while using the reference policy. The 
circles represent sample coordinates while the solid line represents the desired 
path.

Control
(no policy)

Reference 
Policy

ε-greedy 
Policy

Mean -2.01 cm -3.09 cm 3.89 cm

Median -0.0852 cm 2.11 cm 2.06 cm

Maximum 99.1 cm 34.7 cm 62.6 cm
TABLE I

Statistics for 20 episodes under each of three arrangements: with no policy, 
and with either the reference or ε-greedy policy. Statistics relate to orthogonal 
distance measurements of AIBO from desired path.

Control 
(no policy)

Reference 
Policy

ε-greedy 
Policy

Less than 1 cm 13.4 % 14.9 % 12.1 %

Less than 3 cm 35.6 % 38.3 % 27.9 %

Less than 5 cm 49.3 % 54.4 % 37.7 %
TABLE II

For each policy, the percentage of orthogonal distances from desired path 
which are less than some value. These distances were acquired during a series 
of 20 episodes performed for each policy.

preventing  the  agent  from  wandering  too  far  from  ideal 
behavior. In this experiment, the ideal behavior is to walk in a 
straight  line  on  an  unknown surface.  Because  there  are  35 
states and 5 actions in our setup (thus, 175 combinations), a 
chart mapping specific states to actions would be cumbersome 
to view. A simple equation cannot be found, so a series of "if" 
statements is chosen instead. 
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Fig. 6.  Histogram of orthogonal distances read during 20 episodes with no 
corrective actions.

Based  on  state  and  action  definitions  explained  in 
“Background  Information”  section,  the  pseudocode  for  this 
process is listed here:

if current_pos = 7 and current_ov > 2
    current_rv := 1
else if current_pos = 1 and current_ov > 2
    current_rv := 5
else if current_pos == 4 or (current_pos != 4

  and current_ov < 3)
    current_rv := 3
else if (current_pos > 3 and current_ov > 2)

    or (current_pos < 5 and current_ov < 3)
    current_rv := 2
else if (current_pos < 5 and current_ov > 2)

or (current_pos > 3 and current_ov < 3)
    current_rv := 4

where current_pos is  the orthogonal distance  portion of  the 
current  state  (an  integer  1  through  7),  current_ov  is  the 
orthogonal velocity portion of the current state (an integer 1 
through 5), and current_rv is the selected action (an integer 1 
through  5  representing  different  rotational  velocities).  This 
operation has the general effect of choosing greater rotational 
velocities for greater distances from the original desired path, 
unless the desired path is already being approached at a large 
enough speed.  Figure 5 contains a  sample AIBO movement 
plot  for  an  episode  with  the  reference  policy.  The  plot 
demonstrates  that  the  AIBO  takes  corrective  actions  when 
deviating  too  far  from  the  desired  forward  path.  Overall 
performance  of  any  corrective  policy  in  this  project  relies 
heavily, if not  completely, on correct  initial  selection of the 
desired  path.  For  example,  if  the  detected  desired  path  is 
perpendicular to the 

Fig. 7.  Histogram of orthogonal distances read during 20 episodes operating 
with the reference policy.

Fig. 8.  Histogram of orthogonal distances read during 20 episodes operating 
with the ε-greedy policy.

heading of the agent due to vector-tracking noise, the visually 
observed walking performance will be very poor though the 
action-selection policies are performing correctly.

Tables  1  and  2  list  statistics  from 20  episodes  with  the 
reference  policy  of  orthogonal  distances  relative  to  desired 
path. It is found generally that use of the reference policy leads 
to better results than operation without any corrective actions, 
referred  to  as  "basic  walking."  Histograms  of  orthogonal 
distances for "basic walking" and reference policy episodes are 
in  Figure  6  and  7,  respectively.  The  histogram  for  "basic 
walking" operation has a wider spread than that of operation 
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under  the  reference  policy,  indicating  improved  walking 
behavior with this policy.

B. ε-Greedy Policy
After  sufficient  training  episodes  are  performed  with  the 

reference policy, action selection is changed to the ε-greedy 
policy.  Sufficiency  depends  on  repeatable  accuracy  and 
precision of episodes, which, once achieved, indicate a strong 
table  of  Q(s,a)  values.  In this  project  200  training runs are 
performed before switching to the ε-greedy policy. For a brief 
explanation of ε-greedy policy, see Background section above. 
Initially, ε is set to 0.2 to allow for more frequent exploration 
to  previously unknown states and actions.  This on occasion 
leads  to  poor  performance  as  the  AIBO  robot  wanders 
substantially from the desired path after repeated selections of 
random  actions  for  non-maximum Q(s,a)  values.  However, 
since reward is  greatest in a narrow band about the desired 
path  and  decreased  with  each  state  further  away from this 
band,  such  deviating  exploration  is  only  temporary  as  the 
agent soon returns to maximizing Q(s,a) and thus takes actions 
toward the desired path.  After approximately 40 episodes,  ε 
was  reduced  to  0.1  in  order  to  hasten  convergence  of  the 
Q(s,a) table to actual values.  The training is stopped after a 
total of 295 runs on the same surface.

Tables 1 and 2 list statistics based on the last 20 episodes 
using the ε-greedy policy.  Also,  Figure 8 is  a  histogram of 
orthogonal distances for these episodes. Visual inspection of 
Figures  6  and  8  reveals  the  histogram for  ε-greedy  has  a 
greater density of coordinates near the desired path than the 
histogram for no policy (called "basic walking"). However, the 
performance of episodes with the reference policy seems to be 
better than that of ε-greedy as the reference policy succeeded 
in forcing the AIBO closer to the desired path. The tables of 
orthogonal  distance  also  suggest  the  superiority  of  the 
reference policy.

To test the ability of the agent to adjust to a new surface 
given this project setup, 30 episodes are performed using the 
same Q(s,a) table from the original surface and the ε-greedy 
policy. The new surface is the "white surface," and the original 
surface is the "black surface."  Interestingly, since the AIBO 
walking software uses the forearms of the front legs (made of 
smooth plastic) and the feet of the rear legs (made of a rubber-
like material), the rear legs have better traction on the white 
surface than on the black surface, while the front legs have 
better traction on the black surface than on the white surface. 
However, the rear legs have better traction than the front legs 
overall. To aid in analysis, several statistics for the orthogonal 
distances of each episode are compared across episodes. The 
statistic of minimum for absolute value of orthogonal distance 
has a correlation coefficient  of -0.3800,  which indicates the 
table  of  Q(s,a)  values is  approaching correct  values for  the 
new surface.  Also,  the  statistics  of  mean and  median  have 
correlation coefficients of -0.3628 and -0.3484,  respectively, 
which  also  suggest  Q(s,a)  values  are  adjusting  to  the 
peculiarities of the new surface. However, the magnitudes of 

these  correlation  coefficients  are  small  and  thus  may  not 
indicate a trend. For comparison, taking similar statistics for 
the last 72 episodes with ε-greedy policy on the black surface, 
maximum and mean correlation coefficients have magnitudes 
less  than  0.16,  and  minimum  and  median  correlation 
coefficients have magnitudes less than 0.09. Given the random 
error of approximately 3 to 4 cm for vector-tracking and the 
attempt  to  closely follow the desired  path,  these correlation 
parameters reveal the variation of detected coordinates within 
a band about the desired path. The AIBO is typically within 15 
cm of  the desired  path on  the  black surface,  indicating the 
Q(s,a) table is near optimal values for that surface.

IV.CONCLUSION AND FUTURE WORK

The reference policy performed with more precision than 
the ε-greedy policy on the original learning surface. Yet the 
benefits  of  the  ε-greedy  policy exceed  the  reference  policy 
when  operating  on  unknown  surfaces.  While  the  reference 
policy  can  potentially  lead  to  more  precise  results,  the  ε-
greedy  policy  is  more  efficient  in  adapting  to  new 
environments.  Because  of  the  on-board  “knowledge” in  the 
AIBO, the ε-greedy technique has the absolute advantage over 
time-consuming modifications to the reference policy for each 
new surface.

The two major sources of error are noisy Cricket readings 
and incorrect selection of the desired path. Because of jarring 
movements  in  the  AIBO,  the  two beacons  attached  on  the 
walking agent often do not directly face listener nodes, leading 
to  signal  power  attenuation that  results  in  random variation 
measurements unable to be easily filtered. Results of any given 
episode  rely  heavily  on  correct  detection  of  the  forward 
direction of the AIBO. If this direction is flawed, due to noise 
in the vector-tracking system, the desired path is not properly 
established.  Even though this  path is  followed according to 
system specifications,  the  path  itself  is  wrong and  thus  the 
operation of the system as a whole is erroneous. To reduce the 
probability of poorly establishing a desired path, the median of 
9  samples  of  the  AIBO  vector  is  acquired  before  walking 
begins. Still, deeply flawed paths are chosen, though not often.

Future work on this project includes increasing the number 
of  Cricket  listener  nodes  to  reduce  the  presence  of  “dead 
spots,”  where  coordinates  cannot  be  read.  Also,  this 
reinforcement learning system could be applied to the action of 
sidestepping,  that  is  walking  perpendicular  to  the  direction 
faced by the AIBO. Further testing of response of the ε-greedy 
policy  to  an  irregular  obstacle  would  be  useful  since  most 
natural terrains include many irregularities.

The results of this project can be applied generally to any 
situation involving an autonomous agent maneuvering through 
an unknown terrain where coordinate information is available. 
It  is  also readily useful to anyone interested in utilizing the 
subsystems of this project  (Tekkotsu, Cricket, and so on) to 
control an AIBO. Future work is simplified when employing 
this walking methodology to achieve intelligent behavior.

This  setup  incorporates  more  flexible  control  software 
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aiding the AIBO’s ability to walk along a desired path. While 
some reference policy results show minimized deviation from 
desired path, the ε-greedy policy has greater advantage in its 
ability  to  explore  unknown  states.  The  versatility  of  this 
project  design lays the  foundation  for  future  work.  Several 
different platforms are combined into a single system entirely 
accessed  through  MATLAB.  This  facilitates  rapid 
implementation and testing while allowing for conversion to 
other software languages.

V.ACKNOWLEDGMENT

The authors of this paper wish to acknowledge the National 
Science  Foundation  for  providing  the  grant  and  the 
Department of Electrical Engineering and Computer Science at 
the University of Tennessee, Knoxville (UTK) for making this 
opportunity possible. 

Also, special thanks is given to the helpful members of the 
Machine  Intelligence  Laboratory  (MIL)  at  UTK  and  Dr. 
Itamar Elhanany for mentorship and academic guidance.

Finally,  this  project  would  not  be  possible  without  the 
Cricket  Location-Support  System  from  MIT,  Tekkotsu 
software  from  CMU,  and  TinyOS  from  the  University  of 
California  at  Berkeley, all  of  which are  well-supported  and 
open source.

REFERENCES

[1] Tekkotsu application development framework, Carnegie Mellon 
University, http://www.cs.cmu.edu/~tekkotsu/index.html.

[2] T. Goodspeed, R. Wunderlich, I. Elhanany, "WIP: Enhancing 
Reinforcement Learning Class Curriculum using a Matlab Interface 
Library for use with the Sony AIBO Robot," to appear in the 
ASEE/IEEE 2007 Frontiers in Education Conference,  October,  2007.

[3] N. B. Priyantha, A. Chakraborty, H. Balakrishnan, “The Cricket 
Location-Support system,” Proc. 6th ACM MOBICOM, Boston, MA, 
August 2000.

[4] H.  Balakrishnan,  R.  Baliga,  D.  Curtis,  M.  Goraczko,  A. Miu,  N.  B. 
Priyantha,  A.  Smith,  K.  Steele,  S.  Teller,  K.  Wang,  “Lessons  from 
Developing  and  Deploying  the  Cricket  Indoor  Location  System,” 
available at http://cricket.csail.mit.edu/, November 2003.

[5] R. Wunderlich, V. Mahoney, and Z. Liu, “3-D Vector Tracking Using 
Cricket Motes,” class project for ECE 599-012, Department of 
Electrical Engineering and Computer Science, University of Tennessee 
at Knoxville, May 2007.

[6] M. Brain and T. Harris, “How GPS Receivers Work,” September, 2006, 
http://electronics.howstuffworks.comgps.htm.

[7] A. Smith, H. Balakrishnan, M. Goraczko, N. Priyantha, “Tracking 
Moving Devices with the Cricket Location System,” Proc. 2nd 
USENIX/ACM MOBISYS Conf., Boston, MA, June 2004.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An  
Introduction, MIT Press, 1998.

7


	I.INTRODUCTION
	II. Laboratory Environment and Background Information
	III.Experimental Results
	A.Reference Policy
	B. ε-Greedy Policy

	IV.Conclusion and Future Work
	V.Acknowledgment

