

Abstract—A common challenge in autonomous mobile
applications is maintaining controlled movement of an agent on
unknown or unanticipated surfaces. The Tekkotsu application
framework, built to facilitate research with the Sony AIBO robot,
has basic walking functions but does not include any adaptive
behavior. Through the use of an indoor vector-tracking system,
we attempt to implement a reinforcement learning algorithm, Q-
learning, to intelligently learn new surfaces and thus improve the
existing walking mechanism.

I.INTRODUCTION

 With the advance of technology, wireless sensor networks
are becoming more and more useful. These networks are used

for a variety of purposes including technological advances in
medicine, military, traffic, and manufacturing. As the demand
for these networks increases, the need for more accurate and
intelligent designs rises.

Benefits of wireless sensor networks incorporate ease of
operation, simplified systems, compact sensors, and cost
efficiency. Challenge arises in developing simplified
modifications to wireless nodes and systems. Researchers and
developers strive to design inexpensive and efficient networks
that ultimately benefit society.

Sony’s development of the AIBO robot eases the
development of many experiments including those containing
wireless sensor networks. The AIBO’s agility and multi-
faceted performance provide a flexible environment for
research. Due to high demand, Sony released a low-level open
source toolkit called OPEN-R to provide access to the AIBO
hardware for software developers. The Tekkotsu application
development framework [1], developed at Carnegie Mellon
University (CMU), is built on top of OPEN-R to provide a
richer and higher-level environment for programming the Sony
AIBO. The implemented walking system, however, does not
include any dynamic movement adjustments for various
walking surfaces, and thus often fails to perform correctly on



difficult surfaces, particularly those with low coefficients of
friction. An attempt to solve this problem is presented by
adding an intelligent feedback layer on top of the current
walking system through a reinforcement learning algorithm,
specifically Q-learning.

The general goal is to create an autonomous walking robot
that is able to correct its step movements to follow a specified
path. A program is developed to build a table of surface-
dependent values intended to enhance the robot’s decision
making when choosing a specific action. The program uses a
wireless sensor network to determine the location of a mobile
robot. The mobile robot, a Sony AIBO (robotic dog), is
programmed to walk in a line along a desired path.
Reinforcement learning, a type of machine learning, creates a
system of rewards based on an array of combinations for
predefined states and actions. This information is used to aid
the robot in following the desired path.

A long-term goal is to enhance the software to create a
highly versatile program that will allow the robot to choose
paths efficiently in unknown environments.

II. LABORATORY ENVIRONMENT AND BACKGROUND INFORMATION

The Sony AIBO robot and Massachusetts Institute of
Technology (MIT) Cricket wireless sensor nodes are
conjunctively deployed to create an autonomous walking agent
capable of correcting actions to strictly follow a desired path.
The setup includes the Sony AIBO, Tekkotsu software,
MATLAB software, and the MIT Cricket system.

A basic foundation for commanding the Sony AIBO robot is
laid out in the Tekkotsu software developed at CMU [1].
Tekkotsu provides access to many high-level commands for
the Sony AIBO including movement, visual, and behavioral
controls which can be studied on the Tekkotsu website.
Specifically for this project, Tekkotsu aids in controlling the
walking parameters of forward velocity, angular rotation, and
side-stepping of the robot.

A MATLAB interface is used to simplify the deployment of

Nicole Birdwell
Department of Mechanical,
Aerospace, and Biomedical

Engineering
University of Tennessee

1512 Middle Dr.
Knoxville, TN 37996, USA
Email: cbirdwel@utk.edu

Scott C. Livingston
Department of Electrical

Engineering and Computer
Science

University of Tennessee
1508 Middle Dr.

Knoxville, TN 37996, USA
Email: sliving2@utk.edu

 August 10, 2007

Itamar Elhanany
Department of Electrical

Engineering and Computer
Science

University of Tennessee
1508 Middle Dr.

Knoxville, TN 37996, USA
Email: itamar@ece.utk.edu

1

Reinforcement Learning in Sensor-Guided
AIBO Robots

Fig. 1. Raw measurements of distance between a beacon node and a listener
node.

Tekkotsu. The interface, designed at University of Tennessee
at Knoxville by Dr. Itamar Elhanany and students Richard
Wunderlich, Travis Goodspeed, allow all aspects of the
project to be run and analyzed entirely with the MATLAB
software environment (produced by The MathWorks, Inc.). In
short, a Java class is written to facilitate creation of a telnet
connection through MATLAB to an extension of the Tekkotsu
software, called a “behavior,” which enables control of the
walking parameters of forward, rotational, and perpendicular
velocities [2].

The MIT Cricket system consists of wireless nodes that can
act as either listeners or beacons [3]. The beacons operate by
simultaneously emitting radio waves and ultrasonic pulses,
which are received by the listener nodes. The difference in the
speed of sound and the speed of light allows the distance of the
beacon node to be determined by the listener node using the
time delay between arrivals of the radio wave and ultrasound
signals. This measured distance is accurate to about 1 cm for
stationary nodes [4], though in testing this project it is found
that distance error is usually about 3 or 4 cm for moving
nodes.

The default arrangement of Cricket devices, that is
stationary beacons and mobile listeners, can not be used in this
setup since the listeners passively calculate distance
measurements, while a component external to the AIBO
requires live access to distance data. A modification of the
Cricket system to allow tracking of a vector, consisting of two
beacons, through space was designed by Richard Wunderlich
and several others in [5]. Their vector-tracking system is based
on trilateration, similar to GPS [6]. Operation involves three
stationary listeners of known relative positioning acquiring
distances of two mobile beacons and relaying this data to one
of the listeners which is attached to a computer. Finally,
software on the computer, such as MATLAB, can use this
distance data and the known listener positions to determine

Fig. 2. Filtered measurements of distance between a beacon node and a
listener node.

coordinates for each of the two beacons, forming a vector. The
paper that introduces this tracking system includes an
argument that an active mobile architecture (moving beacons)
helps meet the so-called simultaneity condition for
trilateration, thus increasing position accuracy. Whether this
improvement outweighs loss of some original Cricket design
goals, particularly privacy, is addressed in [7]. However, for
this application, the requirement of external computation is
sufficient to select an active mobile architecture.

Initially, three listener Cricket nodes are placed to form a
coordinate axis on the ceiling enclosing an area of
approximately 3 square meters, and two Cricket beacon nodes
are attached to the moving Sony AIBO. To ensure precise time
readings of radio and ultrasonic transmissions, the beacons
must be pointed directly at the listeners. As the angle of
deviation of the beacon’s ultrasound transmitter from the
listener’s receiver increases, the error of beacon distance
calculations also increases. In certain positions on the floor,
the inaccuracy from AIBO-mounted beacon to listener is
substantial, and regions exist where only two of the listeners
can hear a beacon, thus preventing calculation of that beacon's
coordinate. To address these problems, a fourth listener node
is added for redundancy; overall, the four ceiling-mounted
listeners form a 152 cm by 183 cm rectangle. Several additions
to the original vector-tracking system software are made to
handle the new fourth stream of distance measurements. After
testing, this redundant node greatly reduces the presence of
“dead spots”.

Another problem, inherent to the Cricket system, is random
noise in distance measurements. Major outliers, on the order of
20 cm from an expected coordinate, are easily detected and
filtered. However, smaller variations in beacon-listener
distances cause errors in trilateration results which are not
easily distinguished from correct coordinates. To reduce the
effect of this “coordinate noise,” a filter is applied directly to
raw beacon-listener distance data as they arrive to the external

2

Fig. 3. The laboratory setup for this project. Cricket listener nodes were
attached on ceiling above testing surface.

controlling software. Figure 1 contains an example of
consecutive readings for a specific beacon by one of the
listener nodes. The cause of “coordinate noise” occurs during
the first 19 measurements of the example; the major outlying
distance at sample number 40 is easily detected. Filters tested
to reduce noise are a running mean of the current and previous
distances, a running mean of the last three distances, and a
predictive filter based on linear progression of previous two
distances. For this application, the results are best with the first
filter, indicated in discrete-time by y[n] = 0.5(x[n] + x[n-1])
where x is the raw distance and y is the value used for
processing. A figure of the result of running the samples of
Figure 1 through this filter is in Figure 2. The effect of the
noise in the first 19 measurements is somewhat reduced while
allowing for sudden changes in walking movements to pass
through the filter.

The AIBO robot “learns” how to walk on new surfaces
through the implementation of Q-learning, a type of
reinforcement learning. The general process involves the
selection of an action based on the current state of the agent
using a policy. The state in this setup consists of two
components: orthogonal distance from the ideal walking path
and orthogonal velocity relative to the ideal path. Thirty-five
states are defined, with seven distance ranges and five velocity
ranges. Five actions, which correspond to rotational velocity of
the AIBO, are also defined. In Q-learning, the action-value
function for state st and action at is Q(st, at) defined by

Q s t , at Q  st , a t
 [r t1max

a
Q s t1 , a−Q st , a t]

where st means the tth state, α and γ are constants between 0
and 1, and r is the reward for a given state. After the detection
of the current state, the Q(s,a) value for the previous state and
the chosen action, which apparently led to the current state, is
updated based on this formula. To maintain such values as the
optimal Q function is approached, a table of Q(s,a) values is
kept. In this paper, two policies are used: a reference and ε-
greedy. A reference policy is useful to help an agent build a
reasonable initial Q(s,a) table without directly relying on this
table for action selection. The ε-greedy policy selects, for a
given state s, the action a with maximum Q(s,a) with
probability 1-ε (usually 0.8 to 0.9) or explores other actions
(non-maximum) with probability ε (about 0.2 to 0.1). The
general goal of this algorithm, as with many reinforcement
learning methods, is to maximize long-term reward. A more
detailed treatment of Q-learning and reinforcement learning in
general can be found in [8].

All of these components work together to form a complete
system that enables a walking agent, specifically the AIBO
robot, to adjust to unknown surfaces. Because the AIBO
cannot directly sense the direction it is facing, the ideal
forward walking path is determined by acquiring several
position vector samples and then creating a line in memory
that represents the desired path. Thus, the accuracy of the
system largely depends on the accuracy of this detected
desired path. That aside, to understand the overall system, a
somewhat simplified explanation of the acquisition and
processing of a single detected vector is as follows. First, each
of the two beacons attached to the AIBO broadcasts a radio
frequency (RF) and ultrasound (US) signal pair. All four
listeners hear this signal pair simultaneously and use it to
calculate their individual distances to that particular beacon.
Then, each listener not directly attached to a computer (three
total) wirelessly (over an RF band) sends its distance data to
the listener which is attached to a computer. As the distance
data arrives, in the form of packets containing beacon-listener
identifications and distance measurements, it is sent through a
serial stream to the external computer. Next, the MATLAB
script, which largely forms the heart of this system and which
is listening to the serial port, receives this raw data and applies
the filter to it. Once enough data measurements have arrived
(at least three per beacon), the script performs trilateration to
find the xyz-coordinate of each beacon, forming a vector. This
coordinate is analyzed to determine the corresponding state of
the agent. Using the history of previous state-action pairs and
the reward detected for the current state, the table of Q(s,a) is
updated. The selected policy is then applied to this state and an
appropriate action is selected. This action, which corresponds
to a rotational velocity, is sent to the AIBO using the
MATLAB interface to Tekkotsu, and finally the AIBO adjusts
its movement as commanded, repeating the selection process
for the duration of the episode. Each iteration of this process,
occurring for each coordinate reading and processing, takes
approximately 0.61 seconds. This value represents the median
time of a set of 1765 samples (mean is 0.72 seconds).

3

Fig. 4. The walking path of the AIBO without corrective actions. The circles
represent sample coordinates while the solid line represents the desired path.

III.EXPERIMENTAL RESULTS

As touched on in the explanation of Q-learning in the
“Background Information” section, training the walking agent
for a given surface is performed by initially using a training
reference policy to hasten convergence of values in the Q(s,a)
table and then switching to an ε-greedy policy in which the
agent strongly favors (with 0.8 to 0.9 probability) maximizing
Q(s,a) from its current state. After the ε-greedy policy is
selected, entries in the agent's Q(s,a) table approach, at least
theoretically, their real values, thus optimizing reward and,
accordingly, the walking behavior.

As a control, twenty walking episodes are recorded with no
corrective action, which means a simple forward velocity is
sent alone to the Tekkotsu software of the AIBO robot. A
sample plot of such movement can be seen in Figure 4, where
each circle represents a coordinate read by the vector-tracking
system. The agent gradually deviates from the desired forward
path, indicated by a solid line. Along with results for reference
policy and ε-greedy policy performance, which will be
explained in the next two sections, Table 1 contains the
maximum, median, and mean orthogonal distances from the
desired path during all 20 episodes. Also, Table 2 lists
portions of orthogonal distances which are less than 1 cm, 3
cm, and 5 cm from the ideal path. Comparisons are made after
explanations of the two policies are given.

A.Reference Policy
In Q-learning, the goal of a reference policy is to aid

development of values in the agent's Q(s,a) table while

Fig. 5. The walking path of the AIBO while using the reference policy. The
circles represent sample coordinates while the solid line represents the desired
path.

Control
(no policy)

Reference
Policy

ε-greedy
Policy

Mean -2.01 cm -3.09 cm 3.89 cm

Median -0.0852 cm 2.11 cm 2.06 cm

Maximum 99.1 cm 34.7 cm 62.6 cm
TABLE I

Statistics for 20 episodes under each of three arrangements: with no policy,
and with either the reference or ε-greedy policy. Statistics relate to orthogonal
distance measurements of AIBO from desired path.

Control
(no policy)

Reference
Policy

ε-greedy
Policy

Less than 1 cm 13.4 % 14.9 % 12.1 %

Less than 3 cm 35.6 % 38.3 % 27.9 %

Less than 5 cm 49.3 % 54.4 % 37.7 %
TABLE II

For each policy, the percentage of orthogonal distances from desired path
which are less than some value. These distances were acquired during a series
of 20 episodes performed for each policy.

preventing the agent from wandering too far from ideal
behavior. In this experiment, the ideal behavior is to walk in a
straight line on an unknown surface. Because there are 35
states and 5 actions in our setup (thus, 175 combinations), a
chart mapping specific states to actions would be cumbersome
to view. A simple equation cannot be found, so a series of "if"
statements is chosen instead.

4

Fig. 6. Histogram of orthogonal distances read during 20 episodes with no
corrective actions.

Based on state and action definitions explained in
“Background Information” section, the pseudocode for this
process is listed here:

if current_pos = 7 and current_ov > 2
 current_rv := 1
else if current_pos = 1 and current_ov > 2
 current_rv := 5
else if current_pos == 4 or (current_pos != 4

 and current_ov < 3)
 current_rv := 3
else if (current_pos > 3 and current_ov > 2)

 or (current_pos < 5 and current_ov < 3)
 current_rv := 2
else if (current_pos < 5 and current_ov > 2)

or (current_pos > 3 and current_ov < 3)
 current_rv := 4

where current_pos is the orthogonal distance portion of the
current state (an integer 1 through 7), current_ov is the
orthogonal velocity portion of the current state (an integer 1
through 5), and current_rv is the selected action (an integer 1
through 5 representing different rotational velocities). This
operation has the general effect of choosing greater rotational
velocities for greater distances from the original desired path,
unless the desired path is already being approached at a large
enough speed. Figure 5 contains a sample AIBO movement
plot for an episode with the reference policy. The plot
demonstrates that the AIBO takes corrective actions when
deviating too far from the desired forward path. Overall
performance of any corrective policy in this project relies
heavily, if not completely, on correct initial selection of the
desired path. For example, if the detected desired path is
perpendicular to the

Fig. 7. Histogram of orthogonal distances read during 20 episodes operating
with the reference policy.

Fig. 8. Histogram of orthogonal distances read during 20 episodes operating
with the ε-greedy policy.

heading of the agent due to vector-tracking noise, the visually
observed walking performance will be very poor though the
action-selection policies are performing correctly.

Tables 1 and 2 list statistics from 20 episodes with the
reference policy of orthogonal distances relative to desired
path. It is found generally that use of the reference policy leads
to better results than operation without any corrective actions,
referred to as "basic walking." Histograms of orthogonal
distances for "basic walking" and reference policy episodes are
in Figure 6 and 7, respectively. The histogram for "basic
walking" operation has a wider spread than that of operation

5

under the reference policy, indicating improved walking
behavior with this policy.

B. ε-Greedy Policy
After sufficient training episodes are performed with the

reference policy, action selection is changed to the ε-greedy
policy. Sufficiency depends on repeatable accuracy and
precision of episodes, which, once achieved, indicate a strong
table of Q(s,a) values. In this project 200 training runs are
performed before switching to the ε-greedy policy. For a brief
explanation of ε-greedy policy, see Background section above.
Initially, ε is set to 0.2 to allow for more frequent exploration
to previously unknown states and actions. This on occasion
leads to poor performance as the AIBO robot wanders
substantially from the desired path after repeated selections of
random actions for non-maximum Q(s,a) values. However,
since reward is greatest in a narrow band about the desired
path and decreased with each state further away from this
band, such deviating exploration is only temporary as the
agent soon returns to maximizing Q(s,a) and thus takes actions
toward the desired path. After approximately 40 episodes, ε
was reduced to 0.1 in order to hasten convergence of the
Q(s,a) table to actual values. The training is stopped after a
total of 295 runs on the same surface.

Tables 1 and 2 list statistics based on the last 20 episodes
using the ε-greedy policy. Also, Figure 8 is a histogram of
orthogonal distances for these episodes. Visual inspection of
Figures 6 and 8 reveals the histogram for ε-greedy has a
greater density of coordinates near the desired path than the
histogram for no policy (called "basic walking"). However, the
performance of episodes with the reference policy seems to be
better than that of ε-greedy as the reference policy succeeded
in forcing the AIBO closer to the desired path. The tables of
orthogonal distance also suggest the superiority of the
reference policy.

To test the ability of the agent to adjust to a new surface
given this project setup, 30 episodes are performed using the
same Q(s,a) table from the original surface and the ε-greedy
policy. The new surface is the "white surface," and the original
surface is the "black surface." Interestingly, since the AIBO
walking software uses the forearms of the front legs (made of
smooth plastic) and the feet of the rear legs (made of a rubber-
like material), the rear legs have better traction on the white
surface than on the black surface, while the front legs have
better traction on the black surface than on the white surface.
However, the rear legs have better traction than the front legs
overall. To aid in analysis, several statistics for the orthogonal
distances of each episode are compared across episodes. The
statistic of minimum for absolute value of orthogonal distance
has a correlation coefficient of -0.3800, which indicates the
table of Q(s,a) values is approaching correct values for the
new surface. Also, the statistics of mean and median have
correlation coefficients of -0.3628 and -0.3484, respectively,
which also suggest Q(s,a) values are adjusting to the
peculiarities of the new surface. However, the magnitudes of

these correlation coefficients are small and thus may not
indicate a trend. For comparison, taking similar statistics for
the last 72 episodes with ε-greedy policy on the black surface,
maximum and mean correlation coefficients have magnitudes
less than 0.16, and minimum and median correlation
coefficients have magnitudes less than 0.09. Given the random
error of approximately 3 to 4 cm for vector-tracking and the
attempt to closely follow the desired path, these correlation
parameters reveal the variation of detected coordinates within
a band about the desired path. The AIBO is typically within 15
cm of the desired path on the black surface, indicating the
Q(s,a) table is near optimal values for that surface.

IV.CONCLUSION AND FUTURE WORK

The reference policy performed with more precision than
the ε-greedy policy on the original learning surface. Yet the
benefits of the ε-greedy policy exceed the reference policy
when operating on unknown surfaces. While the reference
policy can potentially lead to more precise results, the ε-
greedy policy is more efficient in adapting to new
environments. Because of the on-board “knowledge” in the
AIBO, the ε-greedy technique has the absolute advantage over
time-consuming modifications to the reference policy for each
new surface.

The two major sources of error are noisy Cricket readings
and incorrect selection of the desired path. Because of jarring
movements in the AIBO, the two beacons attached on the
walking agent often do not directly face listener nodes, leading
to signal power attenuation that results in random variation
measurements unable to be easily filtered. Results of any given
episode rely heavily on correct detection of the forward
direction of the AIBO. If this direction is flawed, due to noise
in the vector-tracking system, the desired path is not properly
established. Even though this path is followed according to
system specifications, the path itself is wrong and thus the
operation of the system as a whole is erroneous. To reduce the
probability of poorly establishing a desired path, the median of
9 samples of the AIBO vector is acquired before walking
begins. Still, deeply flawed paths are chosen, though not often.

Future work on this project includes increasing the number
of Cricket listener nodes to reduce the presence of “dead
spots,” where coordinates cannot be read. Also, this
reinforcement learning system could be applied to the action of
sidestepping, that is walking perpendicular to the direction
faced by the AIBO. Further testing of response of the ε-greedy
policy to an irregular obstacle would be useful since most
natural terrains include many irregularities.

The results of this project can be applied generally to any
situation involving an autonomous agent maneuvering through
an unknown terrain where coordinate information is available.
It is also readily useful to anyone interested in utilizing the
subsystems of this project (Tekkotsu, Cricket, and so on) to
control an AIBO. Future work is simplified when employing
this walking methodology to achieve intelligent behavior.

This setup incorporates more flexible control software

6

aiding the AIBO’s ability to walk along a desired path. While
some reference policy results show minimized deviation from
desired path, the ε-greedy policy has greater advantage in its
ability to explore unknown states. The versatility of this
project design lays the foundation for future work. Several
different platforms are combined into a single system entirely
accessed through MATLAB. This facilitates rapid
implementation and testing while allowing for conversion to
other software languages.

V.ACKNOWLEDGMENT

The authors of this paper wish to acknowledge the National
Science Foundation for providing the grant and the
Department of Electrical Engineering and Computer Science at
the University of Tennessee, Knoxville (UTK) for making this
opportunity possible.

Also, special thanks is given to the helpful members of the
Machine Intelligence Laboratory (MIL) at UTK and Dr.
Itamar Elhanany for mentorship and academic guidance.

Finally, this project would not be possible without the
Cricket Location-Support System from MIT, Tekkotsu
software from CMU, and TinyOS from the University of
California at Berkeley, all of which are well-supported and
open source.

REFERENCES

[1] Tekkotsu application development framework, Carnegie Mellon
University, http://www.cs.cmu.edu/~tekkotsu/index.html.

[2] T. Goodspeed, R. Wunderlich, I. Elhanany, "WIP: Enhancing
Reinforcement Learning Class Curriculum using a Matlab Interface
Library for use with the Sony AIBO Robot," to appear in the
ASEE/IEEE 2007 Frontiers in Education Conference, October, 2007.

[3] N. B. Priyantha, A. Chakraborty, H. Balakrishnan, “The Cricket
Location-Support system,” Proc. 6th ACM MOBICOM, Boston, MA,
August 2000.

[4] H. Balakrishnan, R. Baliga, D. Curtis, M. Goraczko, A. Miu, N. B.
Priyantha, A. Smith, K. Steele, S. Teller, K. Wang, “Lessons from
Developing and Deploying the Cricket Indoor Location System,”
available at http://cricket.csail.mit.edu/, November 2003.

[5] R. Wunderlich, V. Mahoney, and Z. Liu, “3-D Vector Tracking Using
Cricket Motes,” class project for ECE 599-012, Department of
Electrical Engineering and Computer Science, University of Tennessee
at Knoxville, May 2007.

[6] M. Brain and T. Harris, “How GPS Receivers Work,” September, 2006,
http://electronics.howstuffworks.comgps.htm.

[7] A. Smith, H. Balakrishnan, M. Goraczko, N. Priyantha, “Tracking
Moving Devices with the Cricket Location System,” Proc. 2nd
USENIX/ACM MOBISYS Conf., Boston, MA, June 2004.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT Press, 1998.

7

	I.INTRODUCTION
	II. Laboratory Environment and Background Information
	III.Experimental Results
	A.Reference Policy
	B. ε-Greedy Policy

	IV.Conclusion and Future Work
	V.Acknowledgment

