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Abstract— Reproducibility is fundamental to robotics re-
search, but access to appropriate hardware is a major limiting
factor of reproducing experiments. This limitation usually arises
from custom-built solutions without sufficient documentation
and, simply, high costs. We propose that the best way to
improve reproducibility is by removing barriers to safely
sharing hardware. Towards this, we present a framework
for making experimental environments remotely accessible.
Modern virtualization tools like Linux containers are leveraged
to enable reproducible and isolated access. The basic idea is
to run user code in a container and transport all inputs and
outputs through proxy programs that monitor for unsafe states.
This interface is low-level: proxies can operate across serial
lines, TCP, UDP, or HTTP connections. Thus, users are not
locked into any particular programming library or application-
level messaging system. The framework is shown in four case
studies: the social robot Misty, the mobile robot Kobuki (base
of the popular TurtleBot 2) with a LiDAR, wireless sensor
networks, and Autoware.

I. INTRODUCTION

Reproducibility is a pillar of science: objectivity is estab-
lished because the same result can be obtained by differ-
ent people. Robotics, however, presents unique challenges
to having reproducible research. Practical robots involve
specialized (rather than commodity) hardware interacting
with physical environments. The whole system used in an
experiment can be very complex, involving many custom
scripts and local configuration that are not practical to include
in a “Materials and Methods” section of a paper. Even within
application domains that would seem to have a sufficiently
narrow scope to have standardized hardware, such as mobile
manipulation, different labs can have drastically different
hardware for accidental reasons, e.g., financial constraints,
or legacy platforms that are not available for purchase.

Historically, the research community has compensated
for having less independent reproduction of experiments by
having a culture of video demonstrations. Videos of real
robots show readers a practical existence proof: the paper
might not have enough detail to reproduce results, but the
results truly were produced at least once, so with enough time
and effort someone else should be able to do the same. In
contrast, authors who only provide simulations are at risk of
unintentional cheating by adjusting runtime parameters until
the simulation trials succeed. Shared simulation benchmarks
help prevent this, e.g., Meta-World [1] or the SubT Challenge
[2], but typically these are only treated as prerequisite to the
goal of experiments on real hardware.

The other major approach to reproducibility in robotics
research is through benchmarks and standard development
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platforms. The complete list is too long to include here,
but several recent examples of projects with open source
code and hardware designs include TurtleBot [3], F1tenth
[4], Donkey Car [5], Crazyflie [6], and Autoware [7], [8].
Even if a particular robot becomes standard in some topic
area, reproducing results can still be difficult because there
are many contextual aspects of experiments, such as how to
configure Linux hosts, that are easily forgotten or considered
too idiosyncratic to include in published source code. Also,
being open source does not address factors like financial
constraints: space in which to operate the robot, and the cost
of the hardware itself.

In this paper, we propose a general framework for sharing
robots and experiments. We improve reproducibility by re-
moving the need to acquire expensive hardware or operating
space. Instead, researchers can allow remote users to safely
access their robot and directly experience the environment.
The basic idea is to leverage advances in virtualization by
making access to robots much like cloud computing: users
request time, then get exclusive temporary access, and finally
the user’s instance is deleted; then, the hardware is prepared
for the next user. Physical separation often reflects logical
separation: controller software runs on a separate computer
from the software that translates throttle, brake, and steer
commands into actual motion. Thus, we can insert a filter
between components of the robot to perform logging and
apply filter rules according to formal specifications.

A central principle in the proposed system is to be “low-
level” in the following respect: source code that is known
to conduct an experiment will work without modification
inside instances provided via our system. We achieve this
by filtering raw device interfaces: UDP, TCP, HTTP, and
serial buses. Following this principle makes the contribution
of this work important because it is not tied to a particular
messaging framework like ROS [9].

The main contributions of this work are the following:
a simple yet general system for provisioning remote access
across the Internet, a framework of proxies for bounding
states reachable by users, and analytics about low-level
activity from proxy data.

II. PRIOR WORK

Relevant work can be organized into three categories:
(1) robots available via the World Wide Web without a
competitive or performance-measuring aspect, (2) education
or competition-oriented testbeds that support some remote
access, and (3) commercial systems for “cloud robotics.”

Over the past 25 years, there have been various academic
projects that allow remote users to access robots through



Fig. 1. Main components of remote device sharing: each client reports
whether its associated robot (car, arm, . . . ) is available; API Workers act
as brokers between remote users and clients; hubs manage VPN and SSH
connections; the Web UI provides graphical menus, video streaming, etc.

turn-based or “headless” processes. In this context, “head-
less” refers to the absence of a real-time user interface: code
is loaded on the testbed, executed locally, and then users
get results in return. In particular, latency is not critical
because there is no long distance control loop. Work from the
early days of the World Wide Web leveraged technologies of
that time, e.g., Java applets and request-response Web forms
[10]. More recent work has been built on ROS or provides
custom APIs against which your code must be built in order
to work on the robots [11], [12]. Other work is similarly
constrained but with a focus on education and competitions,
e.g., Duckietown [13], the MPI Challege [14], and F1tenth
racing [4]

There are also commercial providers of tools to access
and monitor code on remote robots. However, these focus on
fleet management in certain industries like warehouse robots
or they are built exclusively for ROS-based robots, e.g., by
Rapyuta Robotics [15] and Husarion [16].

III. FRAMEWORK

In this section, we present the framework for sharing hard-
ware. Source code is available in repositories of the rerobots
organization on GitHub. Readers are advised to begin with
the client repository at github.com/rerobots/hardshare. Prac-
tical case studies are given in Section IV.

The framework has two basic aspects: a system for pro-
visioning devices and a set of proxies that filter access to
sensors and motors.

A. Provisioning

As with any service where there is more than one potential
user, we need a system for ensuring mutual exclusivity: at
most one user accesses the robot at a time. The system should
also provide queues, reservations, and other features typical
of sharing a limited resource. To support reproducibility,
each user should begin with the robot in an expected set
of initial states. Finally, the persons who are sharing their
hardware must be able to interrupt remote access and,
optionally, enforce permissions or other constraints on users,
for example, during peer review.

The overall architecture is shown in Figure 1. There are
four components. First, the hardshare client is software
that runs locally in the experimental environment and sends
relevant status information to the server processes. The client
is the main point of managing access for the person who is
sharing hardware. Through it, capabilities are declared, avail-
ability of the robot is advertised, and interface contracts are
enforced. Interfaces and proxies are presented in Section III-
B. Clients also run initialization and termination code on
robots to prepare them for each user.

The second component is the API worker, which man-
ages the server-side of provisioning. Clients connect to API
workers via WebSocket. API workers enforce permissions of
remote users and guarantee that at most 1 user can reach a
robot at a time. When a new instance is started, API workers
create a tunnel (SSH or VPN) in the tunnel hub between
users and the experimental environments. Tunnels are simple
from the user’s perspective: an IP address and port for SSH
connections, or a client certificate to join a VPN.

The fourth component is the website. Users go to it to
find relevant robots, to request connections, and to manage
existing access. The graphical interface is not required: API
workers also accept requests via a public HTTP-based API,
where users can POST new instances, GET instance details,
etc.

The isolated access of a user to a robot is referred to as
an instance. The lifecycle of an instance is as follows:

1) User requests time on a robot. If it is available, then
an instance is started.

2) Instance initialization includes health checks on the
hardware. If something is wrong, the instance is
marked as failed, and user is notified to try again
later. Else, local initialization scripts (unique to the
experimental environment) are run.

3) Instance is marked as “ready,” and the user is given
access credentials.

4) When the instance expires, or when the user declares
that they are done, the instance terminates: local clean-
up scripts (again, unique to the experimental environ-
ment) are run.

The instance includes a host that is presented to the
remote user as root-access to a Linux machine. As typical
for robots, hardware is accessible from this host via serial
lines (character device files in Unix) or as TCP/IP peers. It is
not obvious from the user’s perspective, but they are inside
a Linux container. The implemented framework supports
popular container runtimes, including Docker, Podman, or
LXD, which are chosen for the client according to needs
of the lab or experimental environment. From inside the
container, the user can only reach the robot as permitted
by proxies, discussed in the next section.

B. Proxying

A proxy is a program that passes messages between two
processes, acting as a wrapper around one of the processes. In
practice, proxies are often transparent, performing common
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Fig. 2. USB serial proxy (usbp) between a Linux container and host. Users
within the container read and write to a pseudoterminal (ptmx), and traffic
is forwarded via TCP across the container network, unless unsafe states are
detected. The proxy program usbp decodes messages and, combined with
external pose tracking, decides when to stop access.

Internet tasks like load-balancing Web servers and deliver-
ing cached content without the user knowing that a proxy
handled their request instead of the intended process.

Except for simple network features like NAT (network
address translation), the principle of proxying has not been
explored at lower levels of robot architectures. Thanks to
recent advances in computational speed and bandwidth, this
is now possible and achieved in the framework presented
here. In the following subsections, different proxies are
presented according to the communication layer across which
they operate.

Proxying may require some custom code for each targeted
device. For example, a TCP proxy for a Dexter HD arm is
going to be different than a TCP proxy for a UR5 arm. Both
are robot arms that have similar mechanics, but the details
of the robot APIs are different. Given that proxies made for
popular robots are open source, we expect that new hardware
will be straightforward to support by building on existing
proxy code.

There are three kinds of proxy behavior. First, the no-
op proxy forwards all messages without modification and
without exception. This supports cutting off access quickly
from the remote user when the instance terminates, but
otherwise, it does not interject controls. Second, the simple
blocking proxy forwards messages that satisfy a set of rules
and rejects all others. This is useful when the robot is safe
on its own, but some commands should be unavailable to
remote users, e.g., rebooting the robot or using character
encodings outside of ASCII or UTF-8. Finally, the safety
proxy monitors messages and enforces a boundary contract
to prevent unsafe states from being reached.

The framework includes proxies with all of the above
behaviors and implemented for the following protocols.

1) Serial Filters: UART serial buses are widely used in
embedded devices, e.g., Hokuyo LiDAR [17] and Dynamixel
motors [18]. The proposed filter architecture is shown in
Figure 2, where the device is presented inside the Linux
container as a pseudoterminal [19], and all serial traffic is
monitored. This filter is demonstrated in Sections IV-B and
IV-C.

2) HTTP: While HTTP is widely known for transferring
webpages, it is also popular as the medium for APIs of most
modern web apps. In robotics, HTTP APIs are sometimes
used for behaviors that do not have real-time deadlines,
such as in social robots. In summary, HTTP is organized
in a request-response pattern, so proxies act on requests and
return rejection responses with informative status codes like
403 (permission denied). An HTTP proxy that blocks some
commands and enforces boundary safety is demonstrated in
Section IV-A.

3) TCP and UDP: Many robot sensors and actuators
communicate via TCP or UDP. TCP is connection-oriented
with guarantees such as delivery and ordering of messages.
It is used in the interfaces of the Universal Robot arms. UDP
is a connectionless protocol with few guarantees (messages
can arrive out-of-order or not at all), but it is fast and robust
in practice. In robotics, it is used with very high bandwidth
sensors such as the Velodyne spatial LiDARs, as we did for
integration with Autoware (Section IV-D).

IV. APPLICATIONS

In this section, we present case studies of applying the
framework to different robots. These robots represent several
major areas of research: human-robot interaction, indoor mo-
bile robots, and autonomous cars. The provisioning system
(Section III-A) is the same for all environments. However,
the proxies required additional development uniquely for
each robot. Nonetheless, we expect adding support for sim-
ilar robots in each domain will be straightforward.

A. Misty 2 Social Robot Platform

1) Robot and Environment: The social robot Misty is
programmed using an HTTP-based API [20]. It has differen-
tial drive dynamics with significant slip and two short arms
that cannot grasp objects but are emotionally expressive.
The head has full spherical motion, and the body has many
sensors: microphone array, high fidelity camera, a structured
light depth sensor, contact sensors in the front and back,
near-distance IR range finders, speakers, and a color screen
for displaying animated faces. Misty is shown in Figure 3.

For remote users, Misty is placed in a flat, indoors area
with external camera and speaker. There is LiDAR-based
pose tracking outside of the working area that supports the
filter (described in the next section). Finally, there is a pad
for wirelessly charging the battery in Misty. There are also
several photographs of human heads on the walls to support
experiments with face recognition.

2) HTTP Filter: Misty is controlled by sending motion
commands via HTTP requests and receiving sensor data
streamed via WebSocket. At all times, Misty’s pose is tracked
by an external system. As such, we developed a proxy that
filters access in two respects:

1) a set of rules defining accepted HTTP paths and
parameter ranges,

2) a kill-switch that drops all incoming requests if Misty’s
pose enters the boundary of the workspace and that



Fig. 3. Misty and the experimental environment, including speaker,
overhead camera, and charging pad, as described in Section IV-A.

automatically moves Misty back into the safe operating
region.

The rules can be changed at runtime according to experi-
mental needs, though we did find a motivation for allowing
administrative commands like rebooting Misty. The “kill-
switch” behaves as a barrier certificate that forces the robot
away from the walls surrounding the space and thereby
prevents damaging collisions.

3) Termination: When a user’s access ends, Misty is
automatically docked onto the charged pad. The external
pose tracking allowed us to reliably dock Misty, making the
pad the expected initial state for the next user.

4) Results: We connected two Misty robots into the
framework for more than 1 year. The provisioning sys-
tem treats the environments as interchangeable, improving
availability for experiments and education: if one Misty is
busy, an incoming user can be directed to the other Misty.
During this time, anonymous users from around the world
safely learned and tested code on Misty. Some of the users
were professors teaching children about robots [21]. Other
users programmed Misty with Python, Java, and JavaScript.
Because the framework is implemented below the level of
language tools or libraries, everyone’s code ran without
modification.

B. Kobuki Mobile Base with LiDAR

1) Robot and Environment: The Kobuki mobile base by
Yujin Robot had much popularity several years ago as part of
the TurtleBot 2 development platform promoted in the ROS
community. The TurtleBot 2 had a low-cost structured light
depth sensor. For this experimental environment, we instead
mounted (higher cost) Hokuyo LiDAR sensors. Two Kobuki
robots with LiDAR are in a flat, indoors area as shown in
Figure 4. The workspace is visible to users from two external
cameras.

2) Serial Filter: Most users will have experience with
moving the Kobuki through velocity commands via ROS
messages (in TCP packets). Internally, the ROS nodes are

Fig. 4. Two Kobuki robots with RaspberryPi boards and Hokuyo LiDAR,
each on a battery-charging pad. Floor markings support experiments by
remote users.

Fig. 5. Screenshot of a simple web app that leverages the framework to
control the robots via the kobuki keyop ROS package. The right column
has video streams from both external cameras of the same workspace.

communicating with the Kobuki motor controllers via a serial
protocol. We implemented a proxy for this serial protocol
as illustrated in Figure 2. As with the HTTP proxy for
Misty, this proxy filters access in two respects: a set of rules
defining accepted commands, and a kill-switch that stops
motion when a boundary of safety is reached.

The main intent was to enable low-speed multi-robot
navigation experiments, so the filter prevented commands
that affect unrelated behaviors (e.g., sound sequences), while
some commands were bounded, in particular maximum
speed. An external pose tracking system keeps Kobuki from
crossing the safety barrier.

3) Results: Leveraging the framework, we built a web
app with a browser-embedded terminal to support remote
users without requiring them to understand SSH or VPN
(Figure 5). Internally, the app uses the tunnel created from
provisioning (Section III-A). The container image includes
ROS already installed with relevant packages, so users can
easily begin with keyboard control via the ROS package
kobuki keyop, as shown in a demonstration video [22].



Fig. 6. Screenshots of a pair of Web browsers, each showing a device
from the array and example programs: sender and receiver. The devices
are programmed through an interface across the container-host boundary
illustrated in Figure 2.

C. LoRaWAN Array

1) Summary: LoRaWAN is a protocol for low power and
long range wireless communications. While not a “robot”
per se, devices with LoRaWAN are used for sensing and
automation in many industries. Wireless behavior is difficult
to simulate, so in practice, it is critical for experiments to be
conducted on real hardware.

Thus motivated, we applied the proposed framework to
share an array of TTGO LoRa32 SX1276 boards. All boards
connect to a USB hub and are programmed from a single
host running the hardshare clients (Section III).

Camera images are cropped such that each user can only
see the board associated with their instance. Termination is
easier for these devices compared to freely moving robots:
it suffices to erase flash memory at the end of each user’s
access.

2) Results: As with the previous applications, a simple
website was built on the framework. It includes a C++
code editor and terminal for streaming serial output from
the devices. An example of two remote users sending and
receiving LoRaWAN wireless packets is shown in Figure 6.

D. Autoware

1) Summary: A simple configuration for Autoware con-
sists of a car that accepts brake, throttle, and steer software
commands and that has a LiDAR (laser range finder) and
color camera. The car shown in Figure 7 had such a
configuration with a single Linux host for running all of
the autonomy software. A supplemental power source with
it was installed in the trunk.

2) Results: We installed the client software for the frame-
work. The Velodyne LiDAR was made accessible through
a UDP proxy (Section III-B.3). Instances were available
through SSH and VPN. Instances of remote access have a
container with Autoware already installed and point clouds
streamed from the sensor as shown in Figure 7. Motion
commands (steering, throttle, brake) are not supported yet.
Thus, the vehicle allowed passive access via the framework,
where remote users could receive sensor data and visualize
through RViz.

Fig. 7. Drive-by-wire car with Velodyne LiDAR and running Autoware.
The hardware configuration was by PIX Moving in Guiyang, China.

V. ANALYTICS

In experimental robotics, logs are critical for incremental
software improvements, machine learning training, reviewing
faults during field tests, etc. Logs typically are tied to the
library or messaging system used, e.g., ROS bags for robots
developed with ROS. Furthemore, logs are often recorded
by nodes that are peers in the relevant network, consuming
additional resources such as an additional TCP connection
for each relevant sensor on the robot. With the presented
framework, we can capture logs of messages directly by
the proxy, without requiring more network connections. For
each proxy, these logs only involve the proxied device. These
low-level traces are useful in ways where application-level
logging, e.g., ROS bags, is not. For example, a practical
challenge of reading ROS bags recorded from previous
software versions is to know which topics are relevant for
which parts of the robot and to ensure the rest of the
ROS environment is ready to play back these messages. By
contrast, proxy traces correspond to messages in protocols
that rarely or never change, so playback is straightforward.

Consider the Misty experimental environment from Sec-
tion IV-A. The HTTP proxy can record all commands
without any modification at the application level. For ex-
ample, during the month of October 2020, one of the Misty
workspaces had 18 instances. Of these, 13 instances had a
remote user who ran some code. In other words, 5 instances
were launched but then abandoned. (Recall that instances
terminate automatically after an expiration time.) Among
instances where users controlled the robot, 5 included both
head and wheel motion commands. Interestingly, 7 instances
did not include wheel motion commands, i.e., the robot did
not leave the charging pad, but other actions were taken
including head and arm motions or sensor data were read.
Note that Misty has largely been used by a community not
familiar with ROS, so other logging options are not readily
available.

Figure 8 shows the number of head and base motion
commands sent to Misty by anonymous users. Recall that
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Fig. 8. Histograms of commands sent to move the robot base and head.
Bin width is 15 seconds. Data are from 50 instances where remote users
from around the world ran code on Misty (case study in Section IV-A).
Anonymous users had instances of duration 900 seconds (15 minutes).

each instance begins at a known initial state: the charging
pad. As such, the initial maximum in the histogram of base
motion has an intuitive explanation: no matter the interests
of the anonymous user, their code first had to move off of
the charging pad. Charts like these are interesting because
the data are not tied to the libraries and programming
languages in which the users’ algorithms were implemented.
For other robots with ROS support, low-level interface data
can complement application-level ROS logs. If the robot
is supported by more than one library, traces from the
presented framework provide a uniform basis for comparing
performance.

VI. CONCLUSION AND FUTURE WORK

To improve reproducibility of robotics research, we pro-
posed a general framework for making robots and experi-
mental environments remotely accessible. Our approach is
to combine a provisioning system with device proxies that
make access by untrusted users safe and that do not constrain
users to special library or language tools. This handles the
two limiting factors to reproducibility: cost of hardware and
custom, undocumented infrastructure in labs. After describ-
ing the overall architecture, we presented several examples
that show the versatility of the approach.

There are many directions of future work. While we
built this with human users in mind, it can be used by
programs to automatically access robots, run code, collect
results, and repeat. Since access is low-level, not limited to a
domain-specific library or toolset, future work will leverage
this repeatability for continuous integration testing as well
as machine learning. As more sensors, motors, and robot
platforms are added, we plan to build a library of ready-to-
use proxies together with the open source client.
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