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The purpose of this draft paper is to address whether one can avoid the “mul-
tiple passes” required for learning during each time step when using an artificial
neural network for value function approximation (in reinforcement learning)
by tracking differences in successive approximations with an exponential filter.
This idea is referred to as the “one-pass method” and would allow estimation
of the temporal difference error in each time step (assuming discrete time) with
only one feedforward operation (which in many cases is still performed without
learning, e.g., when a control policy is derived from the action-value function).

Note this is only a draft, hence lacking some appropriate references. For
now, an excellent classic text is Reinforcement Learning: An Introduction by
R. S. Sutton and A. G. Barto (1998; MIT Press). Some detail is left out of the
analysis below for the sake of brevity.

Let ω ∈ R such that 0 < ω < 1. Call the state set S and the action
set A, and assume both sets are at most countable. Suppose the policy π is
deterministic and fixed; accordingly, only policy evaluation is examined here,
not policy improvement. Let the reward function r be defined such that it
returns a scalar value given a state-action pair (i.e., r : S × A → R). Define
the action-value function Qπ : S × A → R to be the expected return given the
policy π and an initial state-action pair. Specifically, given state st and action
at (at time t, as indicated by subscript),

Qπ(st, at) = r(st, at) + γr(st+1, at+1) + γ2r(st+2, at+2) + · · · .

Thus,
Qπ(st, at) = r(st, at) + γQπ(st+1, at+1). (1)

Denote the approximation of Qπ by Q̃π. At time t, the difference between
Qπ and Q̃π, referred to as the approximation error at (st, at), is

Qπ(st, at)− Q̃π(st, at) = [r(st, at) + γQπ(st+1, at+1)]− [r(st, at) + γQ̃π(st+1, at+1)]

= γ[Qπ(st+1, at+1)− Q̃π(st+1, at+1)]

In the one-pass method, we have

ρt = (1− ω)ρt−1 + ω[Q̃π(st, at)− Q̃π(st−1, at−1)] (2)
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and the next action-value approximation (of an approximation),

̂̃
Qπ(st+1, at+1) = Q̃π(st, at) + ρt.

The approximation error for the one-pass method is thus

Qπ(st, at)− Q̃π(st, at) = γ[Qπ(st+1, at+1)− ̂̃
Qπ(st+1, at+1)]

= γ[Qπ(st+1, at+1)− Q̃π(st, at)− ρt] (3)

To better understand what convergence may look like, assuming it is pos-
sible, I consider the case when approximation error is zero for all state-action
pairs and investigate its implications. The left-hand side of equation (3) is thus
0, and we have

Qπ(st+1, at+1) = Qπ(st, at) + ρt,

and perhaps more interestingly,

ρt = Qπ(st+1, at+1)−Qπ(st, at). (4)

Now I will show that this implies that the running average ρt must be con-
stant. Beginning with equation (2),

ρt = (1− ω)ρt−1 + ω[Q̃π(st, at)− Q̃π(st−1, at−1)]

= (1− ω)ρt−1 + ω[Qπ(st, at)−Qπ(st−1, at−1)] because Qπ(s, a)− Q̃π(s, a) = 0 ∀s, a
= (1− ω)ρt−1 + ωρt−1 by equation (4)
= ρt−1

Therefore, ρt = ρ0 for all time steps t ≥ 0. Because it has been shown that the
running average ρt is constant, it will now be written as ρ.

Equation (4) now indicates that, given the hypothesis of action-value func-
tion convergence, the difference between each consecutive state-action pair under
the policy π is constant.

One final interesting observation, again under the hypothesis of convergence,
is made by combining equations (1) and (4),

Qπ(st, at) = Qπ(st+1, at+1)− ρ

=
1
γ

[Qπ(st, at)− r(st, at)]− ρ,

and then rearranging terms to arrive at

Qπ(st, at) =
γρ+ r(st, at)

1− γ
. (5)

This finding is important because it follows from the hypothesis of convergence;
that is, equation (5) is necessary for convergence.
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It is still not immediately clear what structure of the environment (a Markov
decision process) is necessary for convergence. By combining Eqs. (4) (recall
that ρ is constant) and (5), we have

ρ =
γρ+ r(st+1, at+1)

1− γ
− γρ+ r(st, at)

1− γ

=
r(st+1, at+1)− r(st, at)

1− γ
.

Rearranging terms leads to

r(st+1, at+1) = r(st, at) + ρ(1− γ), (6)

which is a recursive definition for the reward function along any trajectory under
policy π. A trajectory is a sequence of state-action pairs, 〈(s0, a0), (s1, a1), . . .〉.
Eq. (6) can be solved to find the reward at time t (recall that time is discretized
such that t ∈ {0, 1, 2, . . .}):

r(st, at) = tρ(1− γ) + r(s0, a0). (7)
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